反弹高度问题

文章讲述了如何使用编程解决一个物理问题:小球从100米高空自由落下,每次落地反弹回原高度的一半。文章详细描述了计算第10次落地时的距离和第10次反弹的高度,并给出了循环结构的程序,以及如何扩展到任意n次反弹的情况。
摘要由CSDN通过智能技术生成

一个球从100m高度自由落下,每次落地后反跳回原高度的一半,再落下,再反弹。求它在第10次落地时,共经过多少米,第10次反弹多高。(保留2位小数)
输出:sum=299.61,h=0.10
思考:求它在第n次落地时共经过多少米,第n次反弹多高如何做?

我们首先先看第一个问题,当小球在100m落地反弹时始终是他高度的一半,当小球第一次落下时,反弹高度是50m,落下又是50m,依次循环,25,25,12.5,12.5......我们已经找到了规律,剩下的就是写循环结构了。程序如图所示:

在i=1的时候发生了第一次反弹,这时的sum是h=100本身,但是到了后面会发生变化,高度是原来反弹高度的一半但是会有两次高度是一样的,结果如下:

有了这个思路和程序我们可以思考如果这个小球反弹n次会发生什么情况,答案显而易见,只需要在上述程序的基础上输入一个整型变量n就可以了,程序如下图所示:

输出结果如下:

很容貌得出了我们需要的结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值