基于pandas的哪吒2电影评论数据分析

一、项目背景

《哪吒2》作为国产动画电影的续作,凭借前作积累的口碑与IP效应,上映后引发广泛讨论。为深入理解观众对影片的真实反馈,挖掘市场评价中的关键信息,本项目基于电影评论数据集,从评分、情感倾向、地域分布、时间趋势等多维度展开分析,旨在为电影制作方、宣发团队及行业研究者提供数据驱动的决策支持。

二、分析目标

  1. 观众评价洞察:解析评分分布与情感倾向,识别影片的核心优势与争议点。
  2. 用户行为分析:探索评论时间与地域分布规律,揭示观众参与度与市场热度。
  3. 内容优化建议:结合高频关键词与负面反馈,提出剧本、制作及宣发改进方向。

三、方法与工具

  • 数据预处理:使用Python(Pandas、jieba)清洗数据,提取日期、地域信息,并进行情感分析(TextBlob)。
  • 关键词提取:通过分词与词频统计,提炼评论中的核心议题(如“特效”“低俗”“反抗”)。
  • 可视化呈现:借助Tableau构建交互式仪表板,动态展示评分分布、地域热度、时间趋势及情感占比。

四、数据处理

1. 数据预处理

import pandas as pd
import jieba
from textblob import TextBlob
from collections import Counter

# 读取数据(假设数据已保存为 CSV 文件)
df = pd.read_excel("/Users/mac/Downloads/《哪吒2》电影评论数据.xlsx")

# 处理评分中的“无评分”条目(假设填充为 0 或删除)
df["评分"] = df["评分"].replace("无评分", 0).astype(int)

# 过滤异常值(评分应为0-5)
df["评分"] = df["评分"].clip(0, 5)  # 强制评分在0-5范围内
# 查看评分字段基本信息
print("评分字段统计信息:\n", df["评分"].describe())
print("\n评分唯一值:", df["评分"].unique())

# 清洗用户地址(标准化省份名称)
# 定义省/市名称映射(覆盖数据中出现的所有地址)
province_mapping = {
    "北京": "北京市&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2302_80651048

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值