基于改进浣熊算法的微电网多目标优化调度
摘 要:微电网作为电力系统的关键组成部分,在整合可再生能源方面具有显著优势。然而,微电网中多种分布式电源和储能设备的协调运行,构成了一个复杂的多目标优化问题。本文提出了一种改进的多目标浣熊优化算法(COMO),以实现微电网的经济、高效和环保运行。COMO算法通过引入非支配排序和拥挤度计算、优化领导者选择策略、改进约束处理方法,并动态调整搜索范围,有效提升了算法的性能。
本文的主要创新点包括构建全面的微电网多目标优化调度模型,以及对浣熊优化算法进行系统改进,提出了COMO算法。通过算例分析,验证了COMO算法在求解微电网优化调度问题上的优越性。
关键词:微电网;多目标优化;浣熊优化算法;COMO;优化调度
Multi-Objective Optimization Scheduling of Microgrid Based on Improved Coati Optimization Algorithm
Abstract: Microgrids,as a vital component of the power system,have a significant advantage in integrating renewable energy sources. However, the coordinated operation of various distributed power sources and energy storage devices within microgrids forms a complex multi-objective optimization problem. This paper proposes an Improved COA for Multi-Objectives (COMO) to achieve economical, efficient, and environmentally friendly operation of microgrids. The COMO algorithm effectively enhances the performance by introducing non-dominated sorting and crowding distance calculation, optimizing leader selection strategies, improving constraint handling methods, and dynamically adjusting the search range.
The main innovation of this paper is the construction of a comprehensive microgrid multi-objective optimization scheduling model, as well as the systematic improvement of the Coati Optimization Algorithm, leading to the proposal of the COMO algorithm. Through case analysis, the superiority of the COMO algorithm in solving microgrid optimization scheduling problems has been verified.
Keywords: Microgrid; Multi-Objective Optimization; Coati Optimization Algorithm; COMO; Scheduling Optimization
0引言
微电网作为现代电力系统的重要组成部分,其发展历程与全球能源结构的转型和可再生能源技术的进步密切相关。微电网技术使得能源系统能够更高效地利用本地和可再生资源,特别是在整合光伏发电、风力发电等分布式能源方面表现出显著优势[1]。
然而,由于微电网中包含多种类型的分布式电源和储能设备,其出力和运行特性各不相同,如何协调各设备的运行,实现微电网的经济、高效、环保运行,是一个具有挑战性的优化问题。微电网的优化调度旨在合理安排各分布式电源和储能设备的出力,以实现运行成本最小、能源利用效率最高、环境影响最小等多个目标。
浣熊优化算法(Coati Optimization Algorithm,COA)是一种新型智能优化算法,其灵感来源于浣熊在自然界中的觅食和捕猎行为。通过探索和开发两个阶段的平衡,COA能够有效处理复杂的优化问题[2]。将浣熊优化算法应用于微电网优化调度,有望获得优质的调度方案。然而,标准COA算法在处理多目标优化问题和复杂约束条件时仍存在局限性,有必要进行针对性的改进。
本文针对微电网优化调度问题,提出了一种改进的多目标浣熊优化算法(COA for Multi-Objectives,COMO)。首先,建立了一个综合考虑微电网运行成本和环境影响的多目标优化调度模型。然后,在标准COA算法的基础上,引入非支配排序和拥挤度计算来增强算法处理多目标优化问题的能力,优化领导者选择策略以加强全局搜索能力,改进约束处理方法以提高算法对复杂约束的适应性。最后,通过算例仿真,验证了COMO算法在求解微电网多目标优化调度问题上的可行性和有效性。
本文的主要创新点包括:
(1)构建了一个全面的微电网多目标优化调度模型,同时考虑微电网的经济效益和环境效益;
(2)针对微电网优化调度问题的特点,对浣熊优化算法进行了系统的改进,提出了改进的多目标浣熊优化算法(COMO);
(3)通过算例分析,验证了COMO算法在求解微电网优化调度问题上的优越性,为微电网的优化运行提供了新的解决方案。
1 微电网系统运行优化模型
1.1 微网内分布式电源、储能发电特性
微电网系统包含多种分布式电源和储能装置,这些设备的发电特性和模型对于微电网的优化调度至关重要。本文主要讨论风力发电机、光伏发电、柴油发电机、微型燃气轮机和蓄电池的数学模型及其特性。
(1)风力发电机模型
风力发电机(WT)的输出功率取决于风速,其风速功率特性曲线可以描述为以下分段函数[3]:
P W T ′ = { 0 , v < v c i ′ a ′ v 3 + b ′ v 2 + c ′ v + d ′ , v c i ′ ≤ v ≤ v r ′ P r ′ , v r ′ < v < v c 0 ′ 0 , v ≥ v c 0 ′ P_{WT}^{\prime} = \left\{ \begin{matrix} 0, & v < v_{ci}^{\prime} \\ a\prime v^{3} + b\prime v^{2} + c\prime v + d\prime, & v_{ci}^{\prime} \leq v \leq v_{r}^{\prime} \\ P_{r}^{\prime}, & v_{r}^{\prime} < v < v_{c0}^{\prime} \\ 0, & v \geq v_{c0}^{\prime} \end{matrix} \right.\ PWT′=⎩ ⎨ ⎧0,a′v3+b′v2+c′v+d′,Pr′,0,v<vci′vci′≤v≤vr′vr′<v<vc0′v≥vc0′
(1)
其中, P W T ′ P_{WT}^{\prime} PWT′是WT的输出功率, P r ′ P_{r}^{\prime} Pr′是WT
的额定功率, v c i ′ v_{ci}^{\prime} vci′、 v r ′ v_{r}^{\prime} vr′ 和 v c o ′ v_{co}^{\prime} vco′
分别表示WT的切入风速、额定风速以及切出风速。
a ′ 、 b ′ 、 c ′ 、 d ′ a\prime 、b\prime 、c\prime 、d\prime a′、b′、c′、d′是风速功率曲线的参数。当风速低于切入风速 v c i ′ v_{ci}^{\prime} vci′时,风力发电机不发电,即输出功率为0。当风速在切入风速 v d ′ v_{d}^{\prime} vd′和额定风速 v r ′ v_{r}^{\prime} vr′之间时,输出功率随风速的三次方、二次方和一次方成比例增加。当风速在额定风速 v r ′ v_{r}^{\prime} vr′和切出风速 v c 0 ′ v_{c0}^{\prime} vc0′之间时,风力发电机以额定功率 P r ′ P_{r}^{\prime} Pr′运行。当风速大于或等于切出风速 v 60 ′ v_{60}^{\prime} v60′时,为了保护设备,风力发电机停止发电,输出功率为0。
该模型用于微电网系统中风力发电机的功率预测与调度优化。通过实时风速数据,可以预测风力发电机的输出功率,从而优化微电网系统的整体运行策略。
(2)光伏(PV)发电数学模型
光伏发电数学模型描述了光伏电池在不同条件下的输出功率特性[4],光伏电池的输出功率模型可以表示为:
P p v ′ = R p v ′ q p v ′ ( I T ′ I S T C ′ ) [ 1 + α p ′ ( T c ′ − T s t c ′ ) ] P_{pv}\prime = R_{pv}\prime q_{pv}\prime\left( \frac{I_{T}\prime}{I_{STC}\prime} \right)\left\lbrack 1 + \alpha_{p}\prime\left( T_{c}\prime - T_{stc}\prime \right) \right\rbrack Ppv′=Rpv′qpv′(ISTC′IT′)[1+αp′(Tc′−Tstc′)]
(2)
其中 P p v ′ P_{pv}^{\prime} Ppv′为光伏电池的输出有功功率, R p v ′ R_{pv}^{\prime} Rpv′为在标准测试条件下的光伏输出功率, q p v ′ q_{pv}^{\prime} qpv′为光伏的降额系数,通常为0.8。 I T ′ I_{T}^{\prime} IT′为实际太阳辐射强度。 I S T C ′ I_{STC}^{\prime} ISTC′为标准测试条件下的太阳辐射强度。 α p ′ \alpha_{p}^{\prime} αp′为光伏电池板的温度系数。 T c ′ T_{c}^{\prime} Tc′为当前时间步长的光伏电池温度。 T s t c ′ T_{stc}^{\prime} Tstc′为标准测试条件下的光伏电池温度。
该模型解释如下:
① 标准测试条件(stc):
在标准测试条件(通常为辐照度1000W/m2,温度25°C)下,光伏电池的输出功率为 R p v ′ R_{pv}^{\prime} Rpv′。
②
降额系数 q p v ′ q_{pv}^{\prime} qpv′:光伏电池的实际输出功率通常低于其标称功率,降额系数 q p v ′ q_{pv}^{\prime} qpv′考虑了这一点。常见的降额系数值为0.8。
③ 太阳辐射强度影响:
实际太阳辐射强度 I T ′ I_{T}^{\prime} IT′与标准辐射强度 I S T C ′ I_{STC}^{\prime} ISTC′的比值决定了光伏电池的输出功率。当实际辐射强度高于标准条件时,输出功率增加;反之则减少。
④ 温度影响:
光伏电池的温度系数 α p ′ \alpha_{p}^{\prime} αp′描述了温度对输出功率的影响。当前温度 T c ′ T_{c}^{\prime} Tc′高于标准温度 T s t c ′ T_{stc}^{\prime} Tstc′时,输出功率会降低。
在微电网系统的优化调度中,光伏电池模型有助于最大化光伏发电的利用率,减少对化石燃料发电的依赖。通过精准预测光伏发电能力,优化负荷调度,提升微电网运行的经济性和环境效益。
- 柴油发电机模型
柴油发电机功率输出模型中[5],柴油发电机的功率输出受限于其物理特性和运行约束,具体的功率输出范围可以表示为:
P D E min ( t ) ≤ P D E ( t ) ≤ P D E max ( t ) P_{DE}^{\min}(t) \leq P_{DE}(t) \leq P_{DE}^{\max}(t) PDEmin(t)≤PDE(t)≤PDEmax(t)
(3)
其中, P D E ( t ) P_{DE}(t) PDE(t