1、不同路径
1、状态表示:
假设m = 3,n = 4,那么该问题就是走到(3,4)有多少种路径方法。那么子问题就是:走到(i,j)有多少种路径方法。0 <= i <= 3,0<= j <= 4。
即dp[i][j]:走到第i行第j列有多少种路径方法。
2、状态转移方程:
假设走到(3,4),那么有两种方法:(3,3)->(3,4);或者(2,4)->(3,4)。那么第一种方法的话,就需要知道走到(3,3)的路径方法数量dp[3][3]。同理,第二种方法,就需要走到(2,4)的路径方法数量dp[2][4]。那么dp[3][4] = dp[3][3] + dp[2][4]。
这样的话可以得到dp[i][j] = dp[i-1][j] + dp[i][j-1]。
但是特殊情况:
如果i = 1,即处于第一行:假设走到(1,3),那么只能(1,2)->(1,3)。此时dp[1][3] = dp[1][2]。
如果j = 1,即处于第一列:假设走到(3,1),那么只能(2,1)->(3,1)。此时dp[3][1] = dp[2][1]。
这些特殊情况下,就违背了刚才我们推出的状态转移方程,那么此时我们就可以扩展dp数组。
我们可以多扩展一行,多扩展一列,即多开一列一行虚拟节点,分别代表第0行和第0列。虽然第0行和第0列是没有实际意义的,但是可以维护我们状态转移方程的一致性。
此时,我们就可以将第0行和第0列的dp暂且都初始化为0。
此时状态转移方程就维持一致性:dp[i][j] = dp[i-1][j] + dp[i][j-1]。
3、初始化:
由状态转移方程我们得知:dp[0][j] = dp[i][0] = 0,这是无可厚非的。那么就有一个问题,当机器人在起点(1,1)时,应该初始化为多少呢?
假如走到(1,2),那么dp[1][2] = dp[1][1] + dp[0][2],由于dp[0][2] = 0,并且我们可知,走到(1,2)有且仅有一种方法,那么为了维护填写状态表的正确性,我们就应该将dp[1][1] = 1,作为初始化。
但是由于我们遍历dp数组时,应该需要从(1,1)开始遍历,所以dp[1][1]也应该需要满足状态转移方程,那么此时我们将dp[1][1]初始化为1就无法满足了,所以我们就转变思路,将dp[0][1] = 1,作为初始化。
0 | 1 | 0 | 0 |
0 | |||
0 |
4、遍历顺序:
就从行开始遍历,然后遍历列即可。这里先遍历行还是先遍历列