基于改进莱维飞行和混沌映射粒子群优化算法(LPSO)原理:
通过引入混沌映射机制,对其群体进行初始化,增加粒子群个体的多样性;然后在粒子群个体的位置更新公式上引入改进的莱维飞行机制,提高搜索精度,帮助粒子群个体跳出局部最优。
BP神经网络初始的权值阈值都是随机生成的,因此不一定是最佳的。采用智能算法优化BP神经网络的权值阈值,使得输入与输出有更加完美的映射关系,以此来提升BP神经网络模型的精度。采用LPSO算法对BP神经网络的权值阈值进行优化。
算例使用股票数据,包含特征:开盘价,盘中最高价,盘中最低价,收盘价等,即多输入
参考文献:《基于BLP-ALO-SVM的风电功率短期预测方法》《基于改进粒子群优化算法的特征选择方法研究》《融合莱维飞行与黄金正弦的粒子群优化算法》《基于莱维飞行的多目标粒子群优化算法研究及应用》《混沌映射的粒子群算法分析比较》《多策略融合的改进粒子群算法在电力系统无功优化中的应用》
代码获取方式:
关注公X众X号:New Power System预测和优化理论
分享新型电力系统预测和优化领域的理论研究成果,包括优秀论文、工程应用、仿真代码等
电力系统预测和优化方向研究生必备matlab-yalmip代码!祝您快速入门,早日发paper!【不断更新】
链接:

本文介绍了一种结合混沌映射和改进莱维飞行的粒子群优化算法(LPSO),用于BP神经网络权值的智能优化。该方法通过增强群体多样性和搜索精度,提升模型在股票预测中的精度,同时也适用于电力系统优化。研究还提供了相关文献参考和代码获取途径。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



