背包九讲(01背包,完全背包,二维费用的背包)

01背包

分析问题

2.1 第一步:状态表示
最大价值是物品数量i和背包容量j的函数。
设函数f[i][j]表示前i件物品放入容量为j的背包的最大价值。
最终的最大价值就是物品数量i从0增长到n,背包容量j从0增长到m时的f[n][m]值。

2.2 第二步:确定状态转移方程
状态变量:f[i][j]表示前i件物品放入容量为j的背包的最大价值

当前容量为j,我们要考虑第i件物品能否放入?是否放入?

1.如果当前背包容量j<v[i],不能放入,则f[i][j]=f[i-1][j]
2.如果当前背包容量j>=v[i],能放入但是要比较代价
2.1 如果第i件物品不放入背包,则f[i][j]=f[i-1][j]
2.2 如果第i件物品放入背包,则f[i][j]=f[i-1][j-v[i]]+w[i]
如果第i件物品放入背包,则背包容量还剩j-v[i],所以要取前i-1件物品放入背包剩余容量j-v[i]所获得的最大价值f[i-1][j-v[i]]。
在这里插入图片描述

我们就可以得到状态转移方程
在这里插入图片描述
下图可以更清晰的看出状态转移方程的变化
在这里插入图片描述

朴素代码

#include<bits/stdc++.h>
using namespace std;
int w[1010],v[1010],f[1010][1010];
int main()
{
    int a,b;
    cin>>a>>b;
    for(int i=1;i<=a;i++)
    cin>>v[i]>>w[i];
    for(int i=1;i<=a;i++)
    {
        for(int j=0;j<=b;j++)
        {
            f[i][j]=f[i-1][j];
            if(j>=v[i])
            f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
        }
    }
    cout<<f[a][b]<<endl;
}

优化代码

#include<iostream>
using namespace std;
int v[1005];
int value[1005];
int f[1005];
int main (void)
{
    int n,vs;
    cin >> n >> vs;
    for(int i = 1; i <= n; i++) cin >> v[i] >> value[i];
    for(int i = 1; i <= n; i++)
        for(int j = vs; j >= v[i]; j--)
            f[j] = max(f[j],f[j-v[i]] + value[i]);
    cout << f[vs];
    return 0;
}

完全背包

分析问题

完全背包与01背包不一样的是:完全背包中的物品都可以无限次的取,而01背包中的物品只可以取一次,所以完全背包问题中的集合划分会比01背包问题的集合划分多的多的多。还是老方法,画出状态表示和状态计算。
前面思路与01背包问题大差不差,只有在集合划分与01背包不同。这个物品也不是无限次的选取,而是在选出物品的总体积不超过背包的总容量。在朴素做法中,我们是将选取的方案用循环表示,即三重循环。
在这里插入图片描述

朴素代码

#include<bits/stdc++.h>
using namespace std;
int m,n,w[1010],v[1010],f[1010][1010];
int main()
{
    cin>>m>>n;
    for(int i=1;i<=m;i++)
    cin>>v[i]>>w[i];
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(j<v[i])
            f[i][j]=f[i-1][j];
            else
            f[i][j]=max(f[i-1][j],f[i][j-v[i]]+w[i]);
        }
    }
    cout<<f[m][n]<<endl;
    return 0;
}

优化代码

#include<iostream>
using namespace std;
int volume[1005],value[1010],f[1010];
 
int main (void)
{
    int n,m;
    cin >> n >> m;
    for(int i =1 ; i <= n; i++) cin >> volume[i] >> value[i];
    
    for(int i = 1; i <= n; i++)
        for(int j = volume[i]; j <= m; j++)
            f[j] = max(f[j],f[j-volume[i]] + value[i]);
    cout << f[m];
    return 0;
}

二维费用的背包

分析问题

这个跟01背包差不多就是多一个变量,我就不多讲了
在这里插入图片描述

朴素代码

#include<bits/stdc++.h>
using namespace std;
int a,b,c,v[1010],m[1010],w[1010],f[1010][110][110];
int main()
{
    
    cin>>a>>b>>c;
    for(int i=1;i<=a;i++)
    {
        cin>>v[i]>>m[i]>>w[i];
    }
    for(int i=1;i<=a;i++)
    {
        for(int j=1;j<=b;j++)
        {
            for(int k=1;k<=c;k++)
            {
                if(j<v[i]||k<m[i])
                f[i][j][k]=f[i-1][j][k];
                else
                {
                    f[i][j][k]=max(f[i-1][j][k],f[i-1][j-v[i]][k-m[i]]+w[i]);
                }
            }
        }
    }
    cout<<f[a][b][c]<<endl;
    return 0;
}

优化代码

#include<iostream>
using namespace std;
int f[105][110];
int volume[1005],value[1005],weight[1005];
int main ()
{
    int n,v,m;
    cin >> n >> v >> m;
    for(int i = 1; i <= n; i++) {
        cin >> volume[i] >> weight[i] >> value[i];
    }
    for(int i = 1; i <= n; i++)
    {
        for(int j = v; j >= volume[i]; j--)
        {
            for(int k = m; k >= weight[i]; k--)
            {
                f[j][k] = max(f[j][k],f[j-volume[i]][k-weight[i]] + value[i]);
            }
        }
    }
    cout << f[v][m];
    return 0;
}
  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值