为熟悉逻辑代数常用基本定律、恒等式和规则——先看:
01 了解概念:
逻辑代数
又称布尔代数,是分析和设计现代数字逻辑电路不可缺少的数学工具,可用于对表达式进行处理,进而完成对逻辑电路的化简、变换、分析和设计。
逻辑关系
是事件产生的条件和结果之间的因果关系。
在数字电路中,条件作为输入信号、结果用输出信号表示
02 逻辑代数的基本定律和恒等式
自等律 | A + 0 = A | A · 1 = A |
---|---|---|
重叠律: | A + A = A | A · A = A |
0、1律: | A + 1 = 1 | A · 0 = 0 |
互补律: | ![]() | ![]() |
交换律: | A + B = B + A | A · B = B · A |
结合律: | A + B + C = (A + B) + C | A · B · C = (A · B) · C |
分配律: | A ( B + C ) = AB + AC | A + BC = ( A + B )( A + C ) |
反演律 (摩根定律) | ![]() | ![]() |
吸收律 | ![]() | ![]() |
其他恒等式 | ![]() | ![]() |
| 简记:A与A非的其余因子的积 |
03 逻辑代数的基本规则
1.带入规则:
在上式中,用另一个函数式含有A的表达式 代入式中所有A的位置,等式仍然成立。这一规则称为代入规则。
2.反演规则:
若将其中所有的与(• )换成或(+),或(+)换成与(•);原变量换为反变量,反变量换为原变量(将1换成0,0换成1),则得到的结果就是原函数的反函数。
3.对偶规则:
对于任何逻辑函数式,将其中的与(• )换成或(+),或(+)换成与(•);并将1换成0,0换成1;那么,所得的新的函数式就是L的对偶式(且对偶式的等号两侧仍成立),记作L' 。
4. 香农展开定理:
即对任何一个逻辑函数 f(x1, x2, …, xi-1, xi, xi+1, …, xn ) 都可以重新表示为
!x_i ·f(x1x_i f(x1, x2, …, xi-1,0, xi+1, …, xn )
+ xi · f(x1, x2, …, xi-1,1, xi+1, …, xn )以此可以减少函数自变量的数目,降低函数的复杂度。