011 逻辑代数的基本定理和恒等式

为熟悉逻辑代数常用基本定律、恒等式和规则——先看:

01 了解概念:

逻辑代数

又称布尔代数,是分析和设计现代数字逻辑电路不可缺少的数学工具,可用于对表达式进行处理,进而完成对逻辑电路的化简、变换、分析和设计。

逻辑关系

是事件产生的条件和结果之间的因果关系。
在数字电路中,条件作为输入信号、结果用输出信号表示

02 逻辑代数的基本定律和恒等式

基本公式

自等律A + 0 = AA · 1 = A
重叠律:A + A = AA  · A = A
0、1律:A + 1 = 1A · 0 = 0
互补律:
交换律:A + B = B + AA · B = B · A
结合律:A + B + C = (A + B) + CA · B · C = (A · B) · C
分配律:A ( B + C ) = AB + ACA + BC = ( A + B )( A + C )
反演律
(摩根定律)
吸收律
其他恒等式

简记:A与A非的其余因子的积
                              ——必可消

 

 03 逻辑代数的基本规则

1.带入规则:

在上式中,用另一个函数式含有A的表达式 代入式中所有A的位置,等式仍然成立。这一规则称为代入规则。

2.反演规则:

若将其中所有的与(• )换成或(+),或(+)换成与(•);原变量换为反变量,反变量换为原变量(将1换成0,0换成1),则得到的结果就是原函数的反函数。

3.对偶规则:

对于任何逻辑函数式,将其中的与(• )换成或(+),或(+)换成与(•);并将1换成0,0换成1;那么,所得的新的函数式就是L的对偶式(且对偶式的等号两侧仍成立),记作L'  。

4. 香农展开定理:

即对任何一个逻辑函数 f(x1, x2, …, xi-1, xi, xi+1, …, xn ) 都可以重新表示为 
   !x_i ·f(x1x_i  f(x1, x2, …, xi-1,0, xi+1, …, xn )                                                  
+ xi · f(x1, x2, …, xi-1,1, xi+1, …, xn )

以此可以减少函数自变量的数目,降低函数的复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值