概率论常用的分布公式

01 常见离散型分布及其概率分布、期望和方差公式

  1. 伯努利分布

    • 概率分布
    • 期望: E(X)=p
    • 方差:D(X)=p(1−p)
  2. 二项分布

    • 概率分布
    • 期望:E(X)=np
    • 方差: D(X)=np(1−p) 
    • 表示方法:X∼B(n,p) 
  3. 泊松分布

    • 概率分布
    • 期望:E(X)=λ
    • 方差: D(X)=λ
    • 表示方法:X∼P(λ)
  4. 几何分布

    • 概率分布
    • 期望: 
    • 方差
  5. 超几何分布

    • 概率分布
    • 期望
    • 方差: 
    • 表示方法:X∼h(n,N,M)
  6.  单点分布

    • 概率分布:P{x=a} = 1

分布名称概率分布期望公式方差公式
0-1分布P(X = 1) = p, P(X = 0) = q (q = 1 - p)E(X) = pVar(X) = pq
二项分布P(X = k) = C(n, k) * p^k * q^(n-k) (k = 0, 1,..., n)E(X) = npVar(X) = npq
泊松分布P(X = k) = (λ^k * e^(-λ)) / k! (k = 0, 1, 2,...)E(X) = λVar(X) = λ
几何分布P(X = k) = q^(k-1) * p (k = 1, 2, 3,...)E(X) = 1/pVar(X) = (1-p)/p^2
超几何分布P(X = k) = (C(M, k) * C(N-M, n-k)) / C(N, n) (k = 0, 1,..., min(M, n))E(X) = (nM)/NVar(X) = (nM(N-M)(N-n))/(N^2(N-1))

02 常见的连续型分布包括以下几种:

  1. 均匀分布

    • 概率密度函数: 
    • 期望: 
    • 方差: 
  2. 正态分布

    • 概率密度函数
    • 期望:E(X)=μ
    • 方差: Var(X)=σ^2
    • 标准化公式为:
    • 表示方法:N(μ,σ^2)
  3. 指数分布

    • 概率密度函数: f(x)=λexp(−λx) ,其中 x≥0
    • 期望: E(X)=1​/λ
    • 方差: Var(X)=1​/λ^2
  4. 伽马分布

    • 概率密度函数
    • 期望:E(X)=α​/λ
    • 方差: Var(X)=α​/λ^2
  5. 贝塔分布

    • 概率密度函数: 
    • 期望: E(X)=a​/(a+b)
    • 方差: 
  6. 卡方分布

    • 概率密度函数
    • 期望: E(X)=k
    • 方差: Var(X)=2k
  7. 柯西分布
    • 概率密度函数
    • 期望:不存在
    • 方差:不存在
  8. 对数正态分布

    • 概率密度函数
    • 期望
    • 方差: 
  9. 韦布尔分布

    • 概率密度函数
    • 期望
    • 方差: 

分布名称概率密度函数表示方法期望方差
正态分布N(μ,σ^2)μ
均匀分布U(a,b)
指数分布Exp(λ)
伽玛分布Γ(r,λ)
贝塔分布B(α,β)
对数正态分布LN(μ,σ^2)
韦布尔分布W(k,λ)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值