数学规划模型(三)

一.非线性规划问题的求解     

        我们继续来学习数学规划模型类型中的最后一种-非线性规划模型。非线性规划需要目标函数或约束条件中至少有其中一个是非线性的。同样的,我们用matlab求解非线性规划问题也需要把问题转换成可以识别的标准型。

        相比与线性规划和整数规划,非线性规划问题的约束条件多了 非线性约束条件,其中,C是非线性不等式约束条件的系数矩阵,Ceq是非线性等式约束条件的系数矩阵。注意,非线性不等式约束条件和非线性等式约束条件的右侧的值一定要为0,也就是说,如果有常数项也一定要将其移到左侧作为系数。

        想必这几道例题都不在话下了。同样的,我们要把最大值问题转换成最大值问题来求解。转换为标准型后,我们就要使用matlab求解非线性规划的函数来求解非线性规划的问题。

        用来求解非线性规划问题的函数是fmincon()函数,可以看出,相比与线性规划,该函数多了许多的参数,同时也多了很多的注意事项。

        首先,非线性规划中初始值的参数一定不能为空,因为实际上我们最后求出的解是在初值的基础上的一个局部最优解,如果选取不同的初值,最后求出的解的结果可能会相差特别大。初始值的选取也是有讲究的,所选取的初值最好能满足题目中的约束条件,如果不能完美符合,也应该做到尽可能往能达到约束条件的初值去选择。

        有时候,题目中可能会要求你求出“全局最优解”,即没有要求求解的范围,这个时候我们能采取两种做法:1.通过给定不同的初始值,在所有的局部最优解里面选取一个最优解。但可以想到的是,这种做法一般是不可取的,因为如果想要求出所有的局部最优解,这并不是一件容易的事,其次,这种做法也会引起一个“矛盾”,这个我们在后面再说。2.先用蒙特卡洛模拟,得到一个蒙特卡罗解,将这个解作为初始值来求最优解。在比赛中,我们的初值通常是通过这种方法来选择的。首先,蒙特卡洛不是一个具体的算法,它是一种思想,通过不停的模拟进行求解,输入不同的随机值,最后能得到一个理论上的最优解。经过事实证实,通过蒙特卡洛模拟出的初始值与实际上最优解所对应的初始值的误差是最小的。

        matlab求解非线性规划问题时可以选取不同的算法。默认的是内点法,同时还有序列二次规划法、有效集法、信赖域反射算法。通过改变函数参数“option”的值可以使函数使用对应的算法,使用不同的算法最后所得出的解也是有所不同的。其中,内点法的稳定性相对来说是最好的。但我们在建模比赛中,也可以同时采用四种算法分别算一遍,观察我们求解的结果哪个最好,同时也可以体现出我们的稳健性。

        "@fun"表示我们的目标函数,我们需要在同一目录下编写一个独立的脚本文件来储存目标函数。编写脚本文件的方式我们在层次分析法和优劣解距离法中均有涉及。其实,就是让我们来编写一个自定义函数,这个函数的返回值作为我们的目标函数。在编写函数时,fun作为我们的函数名,可以随意取,函数参数是我们的决策变量的向量,行列方向取决于初始值X0,f作为我们的函数返回值,也可以任意取名。

        "@nonlfun"表示我们的非线性约束条件,同样,我们也需要编写一个脚本文件储存我们的非线性约束条件。在编写函数时,nonlfun是我们的函数名,可以任意取,函数参数同样是我们的决策变量,函数返回值中C表示我们的非线性不等式约束条件的矩阵,Ceq表示我们的非线性等式约束条件的矩阵,在这里我们都写成列向量的形式保存。

        最后一点就是我们的决策变量X1,X2需要将下标改写为括号,例如X(1),X(2)的形式,这样我们的matlab才可以识别。

        下面我们就对上面的三个例题进行求解,具体的还要看我们的代码。

%% 非线性规划的函数
% [x,fval] = fmincon(@fun,x0,A,b,Aeq,beq,lb,ub,@nonlfun,option)
% x0表示给定的初始值(用行向量或者列向量表示),必须得写
% A b表示线性不等式约束
% Aeq beq 表示线性等式约束
% lb ub 表示上下界约束
% @fun表示目标函数  
% @nonlfun表示非线性约束的函数
% option 表示求解非线性规划使用的方法
clear;clc
format long g   %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)

%% 例题1的求解
% max f(x) = x1^2 +x2^2 -x1*x2 -2x1 -5x2
% s.t. -(x1-1)^2 +x2 >= 0 ;  2x1-3x2+6 >= 0
x0 = [0 0];  %任意给定一个初始值 
A = [-2 3]; b = 6;
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1)  % 注意 fun1.m文件和nonlfun1.m文件都必须在当前文件夹目录下
fval = -fval
% 一个值得讨论的地方,能不能把线性不等式约束Ax <= b也写到nonlfun1函数中?
% 先把nonlfun1中的c改为下面这样:
% c = [(x(1)-1)^2-x(2); 
%        -2*x(1)+3*x(2)-6];
%  [x,fval] = fmincon(@fun1,x0,[],[],[],[],[],[],@nonlfun1)
% 结果也是可以计算出来的,但并不推荐这样做~

%% 使用其他算法对例题1求解
% edit fmincon  % 查看fmincon的“源代码”
% Matlab2017a默认使用的算法是'interior-point' 内点法
% 使用interior point算法 (内点法)
option = optimoptions('fmincon','Algorithm','interior-point')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  
fval = -fval
% 使用SQP算法 (序列二次规划法)
option = optimoptions('fmincon','Algorithm','sqp')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  
fval = -fval   %得到-4.358,远远大于内点法得到的-1,猜想是初始值的影响
% 改变初始值试试
x0 = [1 1];  %任意给定一个初始值 
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  % 最小值为-1,和内点法相同(这说明内点法的适应性要好)
fval = -fval  
% 使用active set算法 (有效集法)
option = optimoptions('fmincon','Algorithm','active-set')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)
fval = -fval  
% 使用trust region reflective (信赖域反射算法)
option = optimoptions('fmincon','Algorithm','trust-region-reflective')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  
fval = -fval  
% this algorithm does not solve problems with the constraints you have specified. 
% 这说明这个算法不适用我们这个约束条件,所以以后遇到了不能求解的情况,记得更换其他算法试试!!!

%% 选取初始值得到的结果可能会不满足限定条件,出现了一个Bug 因此选择的初始值很重要
x0 = [40.8, 10.8];
option = optimoptions('fmincon','Algorithm','interior-point')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  
fval = -fval  
% https://cn.mathworks.com/help/optim/ug/fmincon.html

%% 生成不同的随机初始值来优化代码,有一定几率会触发上面那个Bug,因此不推荐
n = 10;  % 重复n次
Fval = +inf; X = [0,0];  %初始化最优的结果
A = [-2 3]; b = 6;
for i = 1:n
    x0 = [rand()*10 , rand()*10];  %用随机数生成一个初始值(随机数的范围自己根据题目条件设置) 
    [x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option); % 注意 fun1.m文件和nonlfun1.m文件都必须在当前文件夹目录下
    if fval < Fval  % 如果找到了更小的值,那么就代替最优的结果
        Fval = fval;
        X = x;
    end
end
Fval = -Fval
X

%% 使用蒙特卡罗的方法来找初始值(推荐)
clc,clear;
n=10000000; %生成的随机数组数
x1=unifrnd(-100,100,n,1);  % 生成在[-100,100]之间均匀分布的随机数组成的n行1列的向量构成x1
x2=unifrnd(-100,100,n,1);  % 生成在[-100,100]之间均匀分布的随机数组成的n行1列的向量构成x2
fmin=+inf; % 初始化函数f的最小值为正无穷(后续只要找到一个比它小的我们就对其更新)
for i=1:n
    x = [x1(i), x2(i)];  %构造x向量, 这里千万别写成了:x =[x1, x2]
    if ((x(1)-1)^2-x(2)<=0)  & (-2*x(1)+3*x(2)-6 <= 0)     % 判断是否满足条件
        result = -x(1)^2-x(2)^2 +x(1)*x(2)+2*x(1)+5*x(2) ;  % 如果满足条件就计算函数值
        if  result  < fmin  % 如果这个函数值小于我们之前计算出来的最小值
            fmin = result;  % 那么就更新这个函数值为新的最小值
            x0 = x;  % 并且将此时的x1 x2更新为初始值
        end
    end
end
disp('蒙特卡罗选取的初始值为:'); disp(x0)
A = [-2 3]; b = 6;
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1)
fval = -fval  



%% 例题二的求解
x0 = [1 1 1];  %任意给定一个初始值 
lb = [0 0 0];  % 决策变量的下界
[x,fval] = fmincon(@fun2,x0,[],[],[],[],lb,[],@nonlfun2)  % 注意 fun2.m文件和nonfun2.m文件都必须在当前文件夹目录下
% x =
%          0.552167405729277          1.20325915507969         0.947824046150443
% fval =
%           10.6510918606939



%% 使用蒙特卡罗的方法来找初始值(推荐)
clc,clear;
n=1000000; %生成的随机数组数
x1= unifrnd(0,2,n,1);   % 生成在[0,2]之间均匀分布的随机数组成的n行1列的向量构成x1
x2 = sqrt(2-x1);  % 根据非线性等式约束用x1计算出x2
x3 = sqrt((3-x2)/2); % 根据非线性等式约束用x2计算出x3
fmin=+inf; % 初始化函数f的最小值为正无穷(后续只要找到一个比它小的我们就对其更新)
for i=1:n
    x = [x1(i), x2(i), x3(i)];  %构造x向量, 这里千万别写成了:x =[x1, x2, x3]
    if (-x(1)^2+x(2)-x(3)^2<=0) & (x(1)+x(2)^2+x(3)^2-20<=0)   % 判断是否满足条件
        result =sum(x.*x) + 8 ;  % 如果满足条件就计算函数值
        if  result  < fmin  % 如果这个函数值小于我们之前计算出来的最小值
            fmin = result;  % 那么就更新这个函数值为新的最小值
            x0 = x;  % 并且将此时的x1 x2 x3更新为初始值
        end
    end
end
disp('蒙特卡罗选取的初始值为:'); disp(x0)
lb = [0 0 0];  % 决策变量的下界
[x,fval] = fmincon(@fun2,x0,[],[],[],[],lb,[],@nonlfun2)  % 注意 fun2.m文件和nonfun2.m文件都必须在当前文件夹目录下

%% 例题三的求解(蒙特卡罗模拟那一讲的例题)
clear;clc
% 蒙特卡罗模拟得到的最大值为3445.6014
% 最大值处x1 x2 x3的取值为:
%           22.5823101903968          12.5823101903968          12.1265223966757
A = [1 -2 -2;  1 2 2];  b = [0 72];
x0 = [ 22.58   12.58  12.13];
Aeq = [1 -1 0]; beq = 10;
lb = [-inf 10 -inf];  ub = [inf 20 inf];  
[x,fval] = fmincon(@fun3,x0,A,b,Aeq,beq,lb,ub,[])  % 注意没有非线性约束,所以这里可以用[]替代,或者干脆不写
fval = -fval
function f = fun1(x)
    % 注意:这里的f实际上就是目标函数,函数的返回值也是f
    % 输入值x实际上就是决策变量,由x1和x2组成的向量
    % fun1是函数名称,到时候会被fmincon函数调用, 可以任意取名
    % 保存的m文件和函数名称得一致,也要为fun1.m
%      max  f(x) = x1^2 +x2^2 -x1*x2 -2x1 -5x2
    f = -x(1)^2-x(2)^2 +x(1)*x(2)+2*x(1)+5*x(2) ; 
end
function f = fun2(x)
    %     f = x(1)^2+x(2)^2 +x(3)^2+8 ; 
    f = sum(x.*x) + 8;  % 可别忘了x实际上是一个向量,我们可以使用矩阵的运算符号对其计算
end
function f = fun3(x)
    f = -prod(x);  % 可别忘了x实际上是一个向量(prod表示连乘符号,用法和sum类似)
end
function [c,ceq] = nonlfun2(x)
    % 非线性不等式约束
    c = [-x(1)^2+x(2)-x(3)^2;   % 一定要注意写法的规范,再次强调这里的x是一个向量!不能把x(1)写成x1
            x(1)+x(2)^2+x(3)^2-20];
    % 非线性等式约束
    ceq = [-x(1)-x(2)^2+2;
                x(2)+2*x(3)^2-3]; 
end
function [c,ceq] = nonlfun1(x)
    % 注意:这里的c实际上就是非线性不等式约束,ceq实际上就是非线性等式约束
    % 输入值x实际上就是决策变量,由x1和x2组成的一个向量
    % 返回值有两个,一个是非线性不等式约束c,一个是非线性等式约束ceq
    % nonlfun1是函数名称,到时候会被fmincon函数调用, 可以任意取名,但不能和目标函数fun1重名
    % 保存的m文件和函数名称得一致,也要为nonlfun1.m
%     -(x1-1)^2 +x2 >= 0 
   c = [(x(1)-1)^2-x(2)];   % 千万別写成了: (x1-1)^2 -x2
   ceq = [];  % 不存在非线性等式约束,所以用[]表示
end

          这里我们的代码因为涉及到多个脚本文件,所以这里我们的代码实际上应保存在一个文件夹里。

二.非线性规划的典型例题

例题1.选址问题

        这道题我们在线性规划的例题中已经接触过,这次我们加了个第二问。我们可以沿用我们之前的解设。

        相比于线性规划,之前我们的料场的坐标是确定的,即Xj,Yj是确定的,但在第二问中是未知的,所以在我们的目标函数中出现了非线性,所以,第二问应是一个非线性规划问题。同样的,我们需要把问题转换成matlab可以识别的非线性规划的标准型。

        由于我们的料场的坐标未知,因此我们多了4个决策变量,其中X1,Y1表示我们料场1的坐标,X2,Y2表示我们料场2的坐标。但我们的约束条件仍是线性的,所以我们的约束条件的表示仍和第一问相同,主要是我们的目标函数不太好表示,这部分主要看我们的代码。

%% 选址问题
clear;clc
format long g   %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% % (1) 系数向量(原来线性规划问题的写法,我们只需要在此基础上改动一点就可以了)
% a=[1.25  8.75  0.5  5.75  3  7.25];  % 工地的横坐标
% b=[1.25  0.75  4.75	5  6.5  7.25];   % 工地的纵坐标
% x = [5  2];  % 料场的横坐标
% y = [1  7];  % 料场的纵坐标
% c = [];  % 初始化用来保存工地和料场距离的向量 (这个向量就是我们的系数向量)
% for  j =1:2
%     for i = 1:6
%         c = [c;  sqrt( (a(i)-x(j))^2 + (b(i)-y(j))^2)];  % 每循环一次就在c的末尾插入新的元素
%     end
% end
% (2) 不等式约束
A =zeros(2,16);  % 注意这里要改成16
A(1,1:6) = 1;
A(2,7:12) = 1;
b = [20,20]';
% (3) 等式约束
Aeq = zeros(6,16);  % 注意这里要改成16
for i = 1:6
    Aeq(i,i) = 1;  Aeq(i,i+6) = 1;
end
beq = [3 5 4 7 6 11]';  % 每个工地的日需求量
%(4)上下界
lb = zeros(16,1);
% lb = [zeros(12,1); -inf*ones(4,1)];  两个新料场坐标的下界可以设为-inf

% 进行求解
% 注意哦,这里我们只尝试了这一个初始值,大家可以试试其他的初始值,有可能能够找到更好的解。
% 未来我会在遗传算法中再来看这个例题。
x0 = [3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7];  % 用第一问的结果作为初始值
[x,fval] = fmincon(@fun5,x0,A,b,Aeq,beq,lb)  % 注意没有非线性约束,所以这里可以用[]替代,或者干脆不写
reshape(x(1:12),6,2)  % 将x的前12个元素变为6行2列便于观察(reshape函数是按照列的顺序进行转换的,也就是第一列读完,读第二列,即x1对应x_1,1,x2对应x_2,1)
% 新坐标(5.74,4.99) (7.25,7.25)
% fval =
%           89.9231692432933
% 第一问的fval =
%           135.281541790676
135.281541790676 - 89.9231692432933  %  45.3583725473827
function f = fun5(xx)  % 注意为了避免和下面的x同号,我们把决策变量的向量符号用xx表示(注意xx的长度为16)
    a=[1.25  8.75  0.5  5.75  3  7.25];  % 工地的横坐标
    b=[1.25  0.75  4.75	5  6.5  7.25];   % 工地的纵坐标
    x = [xx(13)  xx(15)];  % 新料场的横坐标
    y = [xx(14)  xx(16)];  % 新料场的纵坐标
    c = [];  % 初始化用来保存工地和料场距离的向量 (这个向量就是我们的系数向量)
    for  j =1:2
        for i = 1:6
            c = [c;  sqrt( (a(i)-x(j))^2 + (b(i)-y(j))^2)];  % 每循环一次就在c的末尾插入新的元素
        end
    end
    % 下面我们要求吨千米数,注意c是列向量,我们计算非线性规划时给定的初始值x0是行向量
    f = xx(1:12) * c;
end

例题2.飞行管理问题

        接着我们来看我们的第二个例题。

        这也是一道非线性规划的问题。其中,题目要求飞机飞行方向角调整的幅度尽可能小,所以我们的决策变量应设置为6架飞机调整的飞行角度,目标函数就是对6架飞机调整的飞行角度的和 求最小值,注意我们的飞行角度是可以取负值的,比如飞机向右调整的角度是正的,那么飞机向左调整的角度就为负值,因此,我们在计算角度之和时应加上绝对值或求他们的平方和。

        我们在求解时实际上是把整个过程理想化了,在实际中可能会发生各种各样的情况,所以在这里我们需对问题作出我们的假设。

        然后是我们的约束条件,任意两架飞机的距离要求大于8公里,飞机飞行方向角调整的幅度不应超过30度,其他条件我们一概不用考虑,其中对于条件4来说,在我们的示意图中,进入该区域的飞机在到达区域边缘时,与区域内飞机的距离一定在60公里以上。

        那么问题就来了,我们应如何用数学表达式把目标函数和约束条件表示出来。这里我们参考推导,过程较复杂。

        两种可能的情况是第一种两架飞机的距离一直增大,对应导数恒大于0,所以在初始时刻=0的时候,两架飞机的距离是最近的;另一种情况是两架飞机的距离先减小后增大,对应导数是先小于0,后大于0,在导数值为0的时刻,两架飞机的距离是最近的。对于这两种情况,我们要分类讨论。

        于是,就列出来了我们的非线性不等式约束条件,其中d12和d21是一样的,所以最终,我们有15个不等式约束条件。

        具体还是要靠我们的代码理解。

%% 飞行管理问题
format long g
%%  (1)画六架飞机的位置
clear;clc
figure(1)  % 生成一个图形
box on  % 显示为封闭的盒子
% 绘制飞机的初始位置
data = [150	140	243;
    85	85	236;
    150	155	220.5;
    145	50	159;
    130	150	230;
    0	0	52];
plot(data(:,1),data(:,2),'.r')
axis([0 160,0,160]);% 设置坐标轴刻度范围
hold on;
% 在图上标上注释
for i = 1:6
    txt = ['飞机',num2str(i)];
    text(data(i,1)+2,data(i,2)+2,txt,'FontSize',8)
end
% 把Matlab做出来的图可以导出,然后再放到PPT中画出飞机飞行方向的箭头(就和讲义上的类似)

%% 求解非线性规划问题
x0 = [0 0 0 0 0 0];  % 初始值
lb = -pi/6*ones(6,1);
ub = pi/6*ones(6,1);
[x,fval] = fmincon(@fun6,x0,[],[],[],[],lb,ub,@nonlfun6)
x = x * 180 / pi    % 将弧度转换为度数
% 定义一:fval = 3.7315° 
% 定义二:  fval = 6.9547((°)^2)
function f = fun6(delta)   % 决策变量delta为六架飞机调整的角度
         f =sum(abs(delta)) * 180 /  pi;   % 目标函数第一种定义:绝对值的和(将弧度转换为度数)
   %  f = sum(delta .* delta) * (180 /  pi)^2;  % 目标函数第二种定义:平方和(将弧度转换为度数)
end
function [c,ceq] = nonlfun6(delta)   % 决策变量delta为六架飞机调整的角度
     x = [150 85 150 145 130  0]; % 飞机初始位置的横坐标
     y = [140 85 155  50 150  0]; % 飞机初始位置的纵坐标
     theta = [243 236 220.5 159 230 52] * pi / 180; % 飞机初始的飞行方向角 
     v = 800;  % 飞机速度
     co = cos(theta + delta);  % 包含6个元素的向量
     si = sin(theta + delta);  % 包含6个元素的向量
     % 下面开始计算飞机i和j之间的最短距离(只需要计算矩阵的一半即可)
     d = zeros(6);  % 初始化飞机两两之间的最短距离矩阵
     for i = 2: 6
         for j = 1: i-1
             % 套用我们推导出来的公式计算飞机i和飞机j相距最近的时间
             fenzi = ((y(j)-y(i))*(si(j)-si(i)) +(x(j)-x(i))*(co(j)-co(i))) ;  % 分子
             fenmu =  v * ((co(j)-co(i))^2 + (si(j)-si(i))^2);  % 分母
             t(i,j) =- fenzi / fenmu;
             if t(i,j) <0  
                 d(i, j) = 1000; % 此时最初的位置就是相距最近的点,因为最初的时候所有飞机两两之间的距离就大于8,因此未来绝不会相撞,我们令它们的距离为一个特别大的数
             else
                 d(i, j) = sqrt((x(j)-x(i)+v*t(i,j)*(co(j)-co(i)))^2+(y(j)-y(i)+v*t(i,j)*(si(j)-si(i)))^2); 
             end 
         end
     end
     % 非线性不等式约束
     c =ones(15,1)*8.000001 - [d(2,1); d(3,1:2)'; d(4,1:3)'; d(5,1:4)'; d(6,1:5)'];  
     % 12个非线性不等式约束: “最短距离>8” 等价于 “8 - 最短距离<0”
     % 注意: 由于Matlab标准型中取的是小于等于号,因此这里取一个比8略大的数:8.000001-最短距离<=0 
     ceq = [];  % 没有非线性等式约束
end

        

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值