书生大模型训练营OpenCompass 评测 InternLM-1.8B 实践

环境准备

安装——面向GPU的环境安装

conda create -n opencompass python=3.10
conda activate opencompass
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y


cd /root
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .


apt-get update
apt-get install cmake
pip install -r requirements.txt
pip install protobuf

数据准备 

评测数据集

解压评测数据集到 /root/opencompass/data/ 处。
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

InternLM和ceval 相关的配置文件

列出所有跟 InternLM 及 C-Eval 相关的配置
python tools/list_configs.py internlm ceval

将会看到如下图所示

启动评测

使用命令行配置参数法进行评测

打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py ,贴入以下代码

from opencompass.models import HuggingFaceCausalLM


models = [
    dict(
        type=HuggingFaceCausalLM,
        abbr='internlm2-1.8b-hf',
        path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
        tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
        model_kwargs=dict(
            trust_remote_code=True,
            device_map='auto',
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            use_fast=False,
            trust_remote_code=True,
        ),
        max_out_len=100,
        min_out_len=1,
        max_seq_len=2048,
        batch_size=8,
        run_cfg=dict(num_gpus=1, num_procs=1),
    )
]

由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出。

#环境变量配置
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU
python run.py
--datasets ceval_gen \ # 数据集准备
--models hf_internlm2_chat_1_8b \  # 模型准备
--debug

评测时下载权重文件所需时间较长

运行结果如图

使用配置文件修改参数法进行评测

运行以下代码,在configs文件夹下创建eval_tutorial_demo.py并贴入以下代码
from mmengine.config import read_base

with read_base():
    from .datasets.ceval.ceval_gen import ceval_datasets
    from .models.hf_internlm.hf_internlm2_chat_1_8b import models as hf_internlm2_chat_1_8b_models

datasets = ceval_datasets
models = hf_internlm2_chat_1_8b_models
 将配置文件中的参数传递给run.py并运行
cd /root/opencompass
python run.py configs/eval_tutorial_demo.py --debug
 如图得到相同结果
  • 7
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值