首先安装opencompass和一些依赖项
评测数据集
解压评测数据集到 /root/opencompass/data/
处
InternLM和ceval 相关的配置文件
列出所有跟 InternLM 及 C-Eval 相关的配置
使用命令行配置参数法进行评测
打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py
,贴入代码
from opencompass.models import HuggingFaceCausalLM
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-1.8b-hf',
path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=100,
min_out_len=1,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
跑了4个小时 - - 还是得用30%
跑太慢了,开个30%的开发机
使用配置文件修改参数法进行评测
除了通过命令行配置实验外,OpenCompass 还允许用户在配置文件中编写实验的完整配置,并通过 run.py 直接运行它。配置文件是以 Python 格式组织的,并且必须包括 datasets 和 models 字段。本次测试配置在 configs
文件夹 中。此配置通过 继承机制 引入所需的数据集和模型配置,并以所需格式组合 datasets 和 models 字段。
要重新设置环境变量环境!!没设置会报错
#环境变量配置
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU
训练完后: