一、题目要求
给你一个二叉树的根节点 root
, 检查它是否轴对称。
示例 1:
输入:root = [1,2,2,3,4,4,3] 输出:true
示例 2:
输入:root = [1,2,2,null,3,null,3] 输出:false
提示:
- 树中节点数目在范围
[1, 1000]
内 -100 <= Node.val <= 100
进阶:你可以运用递归和迭代两种方法解决这个问题吗?
二、解法1-递归 O(N)
使用递归,从根开始比较左右两边的节点的val是否相同。
class Solution {
bool _isSymmetric(TreeNode* left, TreeNode* right) {
if (left == nullptr && right == nullptr) // 走到尾,都为空
return true;
if (left == nullptr && right != nullptr || // 一边走到尾,另外一般不是空
right == nullptr && left != nullptr)
return false;
if (left->val != right->val) // 对称节点不相同
return false;
return _isSymmetric(left->left, right->right) &&
_isSymmetric(left->right, right->left);
}
public:
bool isSymmetric(TreeNode* root) {
if (!root)
return true;
return _isSymmetric(root->left, root->right);
}
};
三、解法2-迭代 O(N)
迭代需要我们维护一个栈,每次循环查看栈顶的两个节点是否对称,如果对称且不为空,就插入这两个节点的四个子节点;如果为空说明走到尾了,就不插入。
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (!root)
return true;
stack<TreeNode*> s; // 栈
s.push(root->left);
s.push(root->right);
while (!s.empty()) {
TreeNode* root1 = s.top();
s.pop();
TreeNode* root2 = s.top();
if (root1 == nullptr && root2 == nullptr) { // 为空不再插入节点
s.pop();
continue;
}
if (root1 == nullptr && root2 != nullptr ||
root2 == nullptr && root1 != nullptr) // 不对称
return false;
if (root1->val != root2->val) // 不对称
return false;
s.pop();
s.push(root1->left);
s.push(root2->right);
s.push(root2->left);
s.push(root1->right);
}
return true;
}
};