在一条数轴上有 N 家商店,它们的坐标分别为 A1∼AN。
现在需要在数轴上建立一家货仓,每天清晨,从货仓到每家商店都要运送一车商品。
为了提高效率,求把货仓建在何处,可以使得货仓到每家商店的距离之和最小。
输入格式
第一行输入整数 N。
第二行 N个整数 A1∼AN。
输出格式
输出一个整数,表示距离之和的最小值。
数据范围
1≤N≤100000
,
0≤Ai≤40000
输入样例:
4
6 2 9 1
输出样例:
12
先看暴力(n^2)复杂度,过不了
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin>>n;
int a[n];
for(int i=0; i<n; i++)
{
cin>>a[i];
}
sort(a,a+n);
int x=a[n-1];//最大距离
int c=10000000,b;
int s=0;
for(int i=0; i<x; i++)//从零到最大距离的遍历
{
for(int j=0; j<n; j++)//遍历每个元素
{
s=s+abs(i-a[j]);
}
b=min(s,c);
c=b;
s=0;
}
cout<<b;
}
考察绝对值不等式(中位数解就是最优解)
#include <iostream> // 引入输入输出流库
#include <algorithm> // 引入算法库
using namespace std; // 使用标准命名空间
const int N = 100010; // 定义常量N为100010
int n; // 定义整型变量n
int a[N]; // 定义整型数组a,大小为N
int main() // 主函数
{
cin >> n; // 从标准输入读取一个整数n
for (int i = 0; i < n; i ++ ) cin >> a[i]; // 循环读取n个整数并存储到数组a中
sort(a, a + n); // 对数组a进行排序
int res = 0; // 定义整型变量res并初始化为0
for (int i = 0; i < n; i ++ ) res += abs(a[i] - a[n / 2]); // 循环计算每个元素与中位数的绝对差,并将结果累加到res中
cout << res << endl; // 将结果输出到标准输出
return 0; // 返回0表示程序正常结束
}
n/2 是中位数 对奇数个,偶数个都成立,因为是向下取整,一样的