2060. 奶牛选美 dfs

我们先来理解代码的一下东西:

typedef pair<int, int> PII;
vector<PII> points[2];

vector<pair<int, int>> points[2]; 是一个包含两个 vector<pair<int, int>> 类型元素的数组。这里,pair<int, int> 是一个标准库中的模板类,用于存储一对值,这里存储的是整数类型的键值对。

举个例子,我们可以这样存储元素:

#include <iostream>
#include <vector>
#include <utility>

using namespace std;

int main() {
    vector<pair<int, int>> points[2];

    // 向第一个向量中添加元素
    points[0].push_back(make_pair(1, 2));
    points[0].push_back(make_pair(3, 4));

    // 向第二个向量中添加元素
    points[1].push_back(make_pair(5, 6));
    points[1].push_back(make_pair(7, 8));

    // 输出元素
    for (int i = 0; i < 2; ++i) {
        cout << "points[" << i << "]:" << endl;
        for (size_t j = 0; j < points[i].size(); ++j) {
            cout << "(" << points[i][j].first << ", " << points[i][j].second << ")" << endl;
        }
    }

    return 0;
}

输出结果:

points[0]:
(1, 2)
(3, 4)
points[1]:
(5, 6)
(7, 8)

然后再看代码呦~

#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 55;

int n, m;
char g[N][N];
vector<PII> points[2];
//方向数组
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

void dfs(int x, int y, vector<PII>& ps)
{
    g[x][y] = '.';//标记,如果是X的话就变成.(主要是标记是否已经搜过)
    ps.push_back({x, y});//把点存进去

    for (int i = 0; i < 4; i ++ )//枚举一下上下左右四个方向
    {
        int a = x + dx[i], b = y + dy[i];//求一下当前方向走的坐标
        if (a >= 0 && a < n && b >= 0 && b < m && g[a][b] == 'X')//边界
            dfs(a, b, ps);
    }
}

int main()
{
    cin >> n >> m;//N*M的矩阵
    //读入
    for (int i = 0; i < n; i ++ ){
        for(int j = 0 ; j < m ; j++ )
        {
            cin>>g[i][j];
        }
    }
    //dfs深度优先搜索
    for (int i = 0, k = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            if (g[i][j] == 'X')
                dfs(i, j, points[k ++ ]);

    int res = 1e8;//答案
    //枚举一下两个集合的点
    for (auto& a: points[0])
        for (auto& b: points[1])
            res = min(res, abs(a.x - b.x) + abs(a.y - b.y) - 1);//马哈顿距离
            //-1 是因为求得是两个点之间的距离,但我们这个是把两个端点也求进去了,所以要减1

    cout << res << endl;
    return 0;
}

第一个vector 存的是第一个块的所有坐标

第二个存的是第二个的

答案就是绝对值横纵坐标相减(为什么,你去搜曼哈顿距离就懂了)

这里贴上为什么要减1的方法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值