bfs
爆搜
从起始字符串开始进行 bfs,直到找到目标字符串位子。
为了得到变换顺序,在 bfs 过程中,保存各个字符串的前序序列和变化方式(由哪个字符进行什么变换,可以得到当前字符串)
具体的:
使用字典 pre 保存变换,key 是当前字符串,value 是个一个 pair, 两个值:由哪个字符串进行了什么变换得到了当前字符。
使用队列 q 用来做 bfs 的状态队列
使用字典 dist 保存变换次数,key 是当前字符串,value 是起始字符串最少经过多少次变换可以得到当前字符串
结束条件是:搜索到了目标字符串
dist[目标字符串] 就是变换次数
根据 pre 反推出变换序列
#include <cstring> // 引入cstring头文件,用于字符串操作
#include <iostream> // 引入iostream头文件,用于输入输出流操作
#include <algorithm> // 引入algorithm头文件,用于算法操作
#include <unordered_map> // 引入unordered_map头文件,用于哈希映射操作
#include <queue> // 引入queue头文件,用于队列操作
using namespace std;
char g[2][4]; // 定义一个二维字符数组g,表示状态
unordered_map<string, pair<char, string>> pre; // 定义一个哈希映射pre,存储状态的前驱和移动方式
unordered_map<string, int> dist; // 定义一个哈希映射dist,存储状态的最短距离
void set(string state)
{
for (int i = 0; i < 4; i ++ ) g[0][i] = state[i]; // 将状态的前四个字符赋值给g的第一行
for (int i = 7, j = 0; j < 4; i --, j ++ ) g[1][j] = state[i]; // 将状态的后四个字符赋值给g的第二行
}
string get()
{
string res;
for (int i = 0; i < 4; i ++ ) res += g[0][i]; // 将g的第一行字符拼接成字符串
for (int i = 3; i >= 0; i -- ) res += g[1][i]; // 将g的第二行字符逆序拼接成字符串
return res;
}
string move0(string state)
{
set(state);
for (int i = 0; i < 4; i ++ ) swap(g[0][i], g[1][i]); // 交换g的第一行和第二行的字符
return get();
}
string move1(string state)
{
set(state);
int v0 = g[0][3], v1 = g[1][3]; // 保存g的第一行和第二行的最后一个字符
for (int i = 3; i > 0; i -- )
{
g[0][i] = g[0][i - 1]; // 将g的第一行字符向右移动一位
g[1][i] = g[1][i - 1]; // 将g的第二行字符向右移动一位
}
g[0][0] = v0, g[1][0] = v1; // 将保存的字符放到g的第一行和第二行的第一个位置
return get();
}
string move2(string state)
{
set(state);
int v = g[0][1]; // 保存g的第一行的第二个字符
g[0][1] = g[1][1]; // 将g的第二行的第二个字符赋值给g的第一行的第二个字符
g[1][1] = g[1][2]; // 将g的第二行的第三个字符赋值给g的第二行的第二个字符
g[1][2] = g[0][2]; // 将g的第一行的第三个字符赋值给g的第二行的第三个字符
g[0][2] = v; // 将保存的字符放到g的第一行的第三个位置
return get();
}
int bfs(string start, string end)
{
if (start == end) return 0; // 如果起始状态和目标状态相同,返回0
queue<string> q; // 定义一个队列q,用于广度优先搜索
q.push(start); // 将起始状态加入队列
dist[start] = 0; // 起始状态的最短距离为0
while (!q.empty())
{
auto t = q.front(); // 取出队列的第一个元素
q.pop(); // 弹出队列的第一个元素
string m[3]; // 定义一个字符串数组m,存储移动后的状态
m[0] = move0(t); // 将t进行move0操作得到移动后的状态m[0]
m[1] = move1(t); // 将t进行move1操作得到移动后的状态m[1]
m[2] = move2(t); // 将t进行move2操作得到移动后的状态m[2]
for (int i = 0; i < 3; i ++ )
if (!dist.count(m[i])) // 如果状态m[i]不在dist中
{
dist[m[i]] = dist[t] + 1; // 更新状态m[i]的最短距离
pre[m[i]] = {'A' + i, t}; // 更新状态m[i]的前驱和移动方式
q.push(m[i]); // 将状态m[i]加入队列
if (m[i] == end) return dist[end]; // 如果状态m[i]等于目标状态,返回最短距离
}
}
return -1; // 如果无法到达目标状态,返回-1
}
int main()
{
char x;
string start, end;
for (int i = 0; i < 8; i ++ )
{
cin >> x; // 输入一个整数x
end += x;//目标
}
for (int i = 1; i <= 8; i ++ ) start += char('0' + i); // 初始化start字符串为"12345678"
int step = bfs(start, end); // 进行广度优先搜索,得到最短步数
cout << step << endl; // 输出最短步数
// 有pre反推出变换序列
string res;
while (end != start)
{
res += pre[end].first; // 将当前状态的移动方式添加到res字符串末尾
end = pre[end].second; // 更新当前状态为前驱状态
}
reverse(res.begin(), res.end()); // 将res字符串逆序
if (step > 0) cout << res << endl; // 如果存在最短路径,输出移动方式
return 0;
}