GPT对于每个科研人员已经成为不可或缺的辅助工具,不同的研究领域和项目具有不同的需求。例如在科研编程、绘图领域:
1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。
2、数据可视化: 生成各种类型的数据可视化图表,如折线图、柱状图、散点图、饼图、热力图等。提供数据和要求,生成相应的图表代码或绘制它们。
3、统计分析: 描述统计、假设检验、回归分析等,提供相关的建议和示例代码,帮助你理解和解释数据。
4、机器学习和数据挖掘: 可以为你提供相关的算法介绍、模型建立和调参建议,以及示例代码。
5、数据预处理: 数据预处理是科研中的重要步骤之一。整理、转换和归一化数据,更好分析和建模。
6、代码优化和效率提升: 可以为你提供优化建议和最佳实践,帮助你编写更高效的程序。
7、科研方法论:可以讨论和介绍科研的方法论,包括实验设计、数据采集、结果解释和报告撰写等方面的建议。
【内容简介】;
专题一、AIGC概述
1.1 AIGC课程概述
1.2 AIGC技术发展
1.3 人工智能基本概念
1.4 人工智能发展史
1.5 人工智能技术应用场景介绍
1.6 (课堂动手练习)ChatGPT官网使用方法
1.7 (课堂动手练习)ChatGPT国内使用方法
1.8 (课堂动手练习)ChatGPT的API使用方法
专题二、人工智能算法介绍
2.1 AI算法是如何进行训练的
2.2 如何评估模型效果
2.3 深度学习常用算法介绍
2.4 GPT1-3模型介绍
2.5 强化学习和InstructGPT模型介绍
2.6 RLHF人类反馈强化学习介绍
2.7 ChatGPT和GPT4模型介绍
专题三、大语言模型Prompt提示词使用技巧
3.1 大语言模型和搜索引擎的区别
3.2 Prompt Engineering提示词工程介绍
3.3 (手动)角色扮演
3.4 (手动)使用不同的语气
<