学习目标:
博主介绍: 27dCnc
专题 : 数据结构帮助小白快速入门
👍👍👍👍👍👍👍👍👍👍👍👍
☆*: .。. o(≧▽≦)o .。.:*☆
学习时间:
- 周一至周五晚上 7 点—晚上9点
- 周六上午 9 点-上午 11 点
- 周日下午 3 点-下午 6 点
主题: 二叉树
今日份打卡
- 代码随想录-二叉树
学习内容:
- 二叉搜索树中的搜索
- 验证二叉搜索树
- 二叉搜索树的最小绝对差
内容详细 :
501. 二叉搜索树中的众数
题目考点 : 二叉搜索树
众数
思路 :
将二叉树通过中序遍历转化为有序数组,然后在有序数组中统计重复元素
统计重复元素的方法
- arry[i] = arry[i - 1]
- unique()将重复元素移动到数组末尾
具体实现要分治
- 这个树都遍历了,用map统计频率
- 把统计的出来的出现频率(即map中的value)排个序
- 取前面高频的元素
分治之后具体代码实现
class Solution {
private:
void searchBST(TreeNode* cur, unordered_map<int, int>& map) { // 前序遍历
if (cur == NULL) return ;
map[cur->val]++; // 统计元素频率
searchBST(cur->left, map);
searchBST(cur->right, map);
return ;
}
bool static cmp (const pair<int, int>& a, const pair<int, int>& b) {
return a.second > b.second;
}
public:
vector<int> findMode(TreeNode* root) {
unordered_map<int, int> map; // key:元素,value:出现频率
vector<int> result;
if (root == NULL) return result;
searchBST(root, map);
vector<pair<int, int>> vec(map.begin(), map.end());
sort(vec.begin(), vec.end(), cmp); // 给频率排个序
result.push_back(vec[0].first);
for (int i = 1; i < vec.size(); i++) {
// 取最高的放到result数组中
if (vec[i].second == vec[0].second) result.push_back(vec[i].first);
else break;
}
return result;
}
};
代码操作图示
代码解图意
class Solution {
private:
int maxCount = 0; // 最大频率
int count = 0; // 统计频率
TreeNode* pre = NULL;
vector<int> result;
void searchBST(TreeNode* cur) {
if (cur == NULL) return ;
searchBST(cur->left); // 左
// 中
if (pre == NULL) { // 第一个节点
count = 1;
} else if (pre->val == cur->val) { // 与前一个节点数值相同
count++;
} else { // 与前一个节点数值不同
count = 1;
}
pre = cur; // 更新上一个节点
if (count == maxCount) { // 如果和最大值相同,放进result中
result.push_back(cur->val);
}
if (count > maxCount) { // 如果计数大于最大值频率
maxCount = count; // 更新最大频率
result.clear(); // 很关键的一步,不要忘记清空result,之前result里的元素都失效了
result.push_back(cur->val);
}
searchBST(cur->right); // 右
return ;
}
public:
vector<int> findMode(TreeNode* root) {
count = 0;
maxCount = 0;
pre = NULL; // 记录前一个节点
result.clear();
searchBST(root);
return result;
}
};
236. 二叉树的最近公共祖先
题目考点 : 二叉树结点关系
二叉树
基础条件判断
思路
首先想的是要是能自底向上查找,通过回溯查找,二叉树回溯的过程就是从低到上
情况一
首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。 即情况一:
判断逻辑是 如果递归遍历遇到q,就将q返回,遇到p 就将p返回,那么如果 左右子树的返回值都不为空,说明此时的中节点,一定是q 和p 的最近祖先。
情况二:
二叉树节点数值是不重复的,而且一定存在 q 和 p。但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点 q ( p ) q(p) q(p)。 情况二:
递归三部曲:
- 确定递归函数返回值以及参数
- 确定终止条件
- 确定单层递归逻辑
在递归函数有返回值的情况下:如果要搜索一条边,递归函数返回值不为空的时候,立刻返回,如果搜索整个树,直接用一个变量left、right接住返回值,这个left、right后序还有逻辑处理的需要,也就是后序遍历中处理中间节点的逻辑(也是回溯)。
如果left 和 right都不为空,说明此时root就是最近公共节点。这个比较好理解
如果left为空,right不为空,就返回right,说明目标节点是通过right返回的,反之依然。
单层递归逻辑如下
if (left == NULL && right != NULL) return right;
else if (left != NULL && right == NULL) return left;
else { // (left == NULL && right == NULL)
return NULL;
}
所以整体代码如下
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(p == root||q == root ||root== NULL) return root;
TreeNode*N = lowestCommonAncestor(root->left,p,q);
TreeNode*O = lowestCommonAncestor(root->right,p,q);
if(N != NULL && O != NULL) return root;//不一定是左边是p右边是q
if(N == NULL&&O != NULL) return O;//为什么返回左子树因为是回溯左右子树的根节点就是
if(N != NULL&& O == NULL) return N;//主树的左右子节点所以要返回
return NULL;
}
};
235. 二叉搜索树的最近公共祖先
题目考点 : 二叉搜索树
公共祖先
上题如果会那么这题明显是送分
图解
如图,我们从根节点搜索,第一次遇到 cur节点是数值在[q, p]区间中,即 节点5,此时可以说明 q 和 p 一定分别存在于 节点 5的左子树,和右子树中。
此时节点5是不是最近公共祖先? 如果 从节点5继续向左遍历,那么将错过成为p的祖先, 如果从节点5继续向右遍历则错过成为q的祖先。
所以当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[q, p]区间中,那么cur就是 q和p的最近公共祖先。
理解这一点,本题就很好解了。
而递归遍历顺序,本题就不涉及到 前中后序了(这里没有中节点的处理逻辑,遍历顺序无所谓了)。
如图所示:p为节点6,q为节点9
可以看出直接按照指定的方向,就可以找到节点8,为最近公共祖先,而且不需要遍历整棵树,找到结果直接返回!
详细代码
class Solution {
private:
TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q) {
if (cur == NULL) return cur;
// 中
if (cur->val > p->val && cur->val > q->val) { // 左
TreeNode* left = traversal(cur->left, p, q);
if (left != NULL) {
return left;
}
}
if (cur->val < p->val && cur->val < q->val) { // 右
TreeNode* right = traversal(cur->right, p, q);
if (right != NULL) {
return right;
}
}
return cur;
}
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
return traversal(root, p, q);
}
};
改进后代码
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root->val > p->val && root->val > q->val) {
return lowestCommonAncestor(root->left, p, q);
} else if (root->val < p->val && root->val < q->val) {
return lowestCommonAncestor(root->right, p, q);
} else return root;
}
};
提示: 上一题的代码这题也可以通过!
学习产出:
- 技术笔记 2 遍
- CSDN 技术博客 3 篇
- 习的 vlog 视频 1 个
🔥如果此文对你有帮助的话,欢迎💗关注、👍点赞、⭐收藏、✍️评论,支持一下博主~