引言
在机器学习和数据科学中,分类问题是一种常见的任务。支持向量机(Support Vector Machine, SVM)是一种广泛使用的分类算法,因其出色的性能和高效的计算效率而受到广泛关注。本文将深入探讨支持向量机算法的原理、特点、应用,以及在实际问题中的使用。
一、支持向量机的基本原理
支持向量机是一种基于统计学习理论的监督学习模型,主要用于分类和回归分析。其基本原理是通过寻找一个超平面,将不同类别的样本分开,并最大化两个类别之间的边界(即间隔)。
这个超平面由支持向量确定,这些支持向量是离超平面最近的样本点。
在n维空间中找到一个分类超平面,将空间上的点分类。
1.1 在线性分类中
可以通过一个直线(在二维空间中)或超平面(在高维空间中)将不同类别的样本分开。
一般而言,一个点距离超平面的远近可以表示为分类预测的确信或准确程度。SVM的目标就是最大化这个间隔值,这样可以使得分类器对于新的、未见过的样本有更好的泛化能力。
而那些位于间隔边界上的点,即支持向量,对于确定分类超平面起着决定性的作用。
1.2在实际情况中
线性可分的情况并不总是存在。当遇到线性不可分的样例时,通常的做法是将样例特征映射到高维空间中去。
尽管这样做可能会导致维度变得非常高,但通过使用核函数,可以在低维空间进行计算,而将实质上的分类效果表现在高维空间,从而避免了直接在高维空间中的复杂计算。
1.3 线性可分情况
当数据集是线性可分时,