导数与微分(高等数学)

本文详细介绍了导数的概念,包括平均变化率和瞬时变化率,以及导数存在的充要条件。讲解了基本初等函数、复合函数、高阶导数的求法,涉及隐函数、参数方程和相关变化率的求导,以及函数微分的定义、公式和应用,如近似计算和误差估计。
摘要由CSDN通过智能技术生成

导数概念

平均变化率

        

        lAB的斜率k就表示函数的平均变化率。 

瞬时变化率 

关于导数的两个公式 

导数存在的充要条件 

函数求导法则

基本初等函数的导数公式 

函数可导性与连续性的关系 

        如果该函数在点x处可导,则一定连续;如果该函数在点x连续,却不一定可导。例如下图:

反函数的求导法则 

 

例题 

复合函数的求导法则 

 例题 

 

高阶导数 

        根据物理概念我们可以知道,变速直线运动v是位置s对时间t的导数。 

        而加速度a又是速度v对时间t的变化率,即速度v对时间t的导数。

        (s')'叫做s对t的二阶导数,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数称为四阶导数……一般地,(n-1)阶导数称为n阶导数。

高阶导数的求法 

 归纳法

        用求导法多次连接地求导数,且在过程中寻求它的某种规律。 

 例题 

公式法

1. 高阶导数相加减

 例题 

莱布尼兹公式 

         类似于二项式展开,公式如下:

  例题 

隐函数及参数方程确定函数求导 

 什么是隐函数?

        y与x关系隐藏在一个等式中,例如x^{2}+y^{2}=4,这个方程是半径为2的圆的方程。

隐函数的求导法则

         把y看作与x相关的量y=f(x),求导时将y看做复合函数进行求导。

一、可代入x值与y值的隐函数求导

二、几何函数的隐函数求导 

三、隐函数的高阶导数

 

对数求导法(一般用于指数函数)

参数方程的函数求导 

        我们可以使用一种方法直接给参数方程求导,一般参数方程关系式如下:

                                 

        若将x,y同时看成与t相关的复合函数,则可以进行y与x求导如下:

                         

        倘若y与x二阶求导,则式子如下:

         

   例题 

         

相关变化率 

        设x =x(t)及y=y(t)都是可导函数,而变量x与y间存在某种关系,从而变化\frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}y}{\mathrm{d}t}间也存在一定关系.这两个相互依赖的变化率称为相关变化率。

        相关变化率研究这两个变化率之间的关系,以便从其中一个变化率求出另一个变化率。     

   例题  

函数的微分 

        定义:设函数y=f(x)在某区间内有定义,x0,及x0+\triangle x 在这区间内,如果函数的增量

                                        \Delta y=f(x_{0}+\Delta x)-f(x_{0})

        可表示为:

                                        \Delta y=A\Delta x+o\left(\Delta x\right)

        其中A是不依赖于\triangle x的常数,那么称函数y=f(x)在点x0是可微的,A\triangle x叫做函数y=f(x)在点x相应于自变量增量Ax的微分,记作dy ,即

                                        \mathrm{d}y=A\Delta x

如何理解定义中的公式? 

        

函数微分的充要条件 

 

        由此我们推出函数在x0可导函数在x0可微是充分必要条件。 

基本初等函数的微分公式与微分运算法则

        函数y=f(x)在任意点x的微分,称为函数的微分,记作dy或df(x);函数微分表达式如下:

                                                        \left.\mathrm{d}y=f^{\prime}\left(\begin{array}{c}{x}\\\end{array}\right.\right)\mathrm{d}x

        可以看出,要计算函数的微分,只要计算函数的导数,再乘自变量的微分。

 一、基本初等函数的微分公式

 二、函数和、差、积、商的微分法则

  三、复合函数的微分法则

        

        由上方式子可见,无论u是自变量还是中间变量,微分形式\left.\mathbf{d}y=f^{\prime}\left(\begin{array}{c}{u}\\\end{array}\right.\right)\mathbf{d}u保持不变,这一性质称为微分形式不变性。 

   例题   

 

四、微分在近似计算中的应用

 1.函数的近似计算

        我们可以利用微分将一些复杂的计算公式用简单的近似公式来代替,之前说过,若y=f(x0)在点x0处的导数不为0时,且\Deltax很小,我们有公式如下:

                                   \Delta y\approx\mathrm{d}y=f^{\prime}\left(x_{0}\right)\Delta x.

        这个式子也可以写为:

                        ​​​​​​​        ​​​​​​​   \Delta y=f(x_{0}+\Delta x)-f(x_{0})=f'(x_{0})\Delta x 

                                

例题   

例题   

 2.误差估计

        绝对误差与相对误差:若某个量的精确值为A,它的近似值为a,那么|A-a|叫做a的绝对误差,而绝对误差与|a|的比值\frac{|A-a|}{|a|}     叫做a的相对误差。

        实际工作中,若某个量的精确值是A,测得其近似值是a,又知道其误差不超过\delta_{A},如下:

                                                                |A-a|\leq\delta_A

那么\delta_{A}叫做测量A的绝对误差限,而\frac{\delta_{A}}{|a|}叫做测量A的相对误差限

例题    

  • 16
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值