【高等数学基础进阶】导数与微分

本文详细介绍了导数与微分的概念,包括导数的几何意义、微分的定义,以及二者之间的关系。通过多个例子和定理,阐述了导数公式、求导法则及其应用,如基本初等函数的导数、复合函数求导、隐函数求导等。此外,还讨论了高阶导数的重要性,并给出了常考题型与经典例题解析,帮助读者深入掌握导数和微分的知识。
摘要由CSDN通过智能技术生成

一、导数与微分的概念

1. 导数的概念

定义1(导数)
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_{0})=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
x 0 + Δ x = x x_{0}+\Delta x=x x0+Δx=x
f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_{0})=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} f(x0)=xx0limxx0f(x)f(x0)
Δ x = h \Delta x=h Δx=h
f ′ ( x 0 ) = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_{0})=\lim_{h\to 0}\frac{f(x_{0}+h)-f(x_{0})}{h} f(x0)=h0limhf(x0+h)f(x0)

定义2(左导数):
f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − Δ y Δ x = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_{-}(x_{0})=\lim_{\Delta x\to 0^{-}}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0^{-}}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)

定义3(右导数):
f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + Δ y Δ x = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_{+}(x_{0})=\lim_{\Delta x\to 0^{+}}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0^{+}}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x} f+(x0)=Δx0+limΔxΔy=Δx0+limΔxf(x0+Δx)f(x0)

导数与 f ( x 0 ) f(x_{0}) f(x0)以及其邻域的函数值有关,左导数与 f ( x 0 ) f(x_{0}) f(x0)以及其左邻域的函数值有关,右导数与 f ( x 0 ) f(x_{0}) f(x0)以及其右邻域的函数值有关

定理1:可导 ⇔ \Leftrightarrow 左右导数都存在且相等

定义4(区间上可导及导函数)

例1:设函数 f ( x ) f(x) f(x)对任意 x x x均满足等式 f ( 1 + x ) = a f ( x ) f(1+x)=af(x) f(1+x)=af(x),且有 f ′ ( 0 ) = b f'(0)=b f(0)=b,其中 a , b a,b a,b为非零常数,则 f ′ ( 1 ) = f'(1)= f(1)=()

f ′ ( 1 ) = lim ⁡ Δ x → 0 f ( 1 + Δ x ) − f ( 1 ) Δ x 为了使用 f ( 1 + x ) = a f ( x ) ,用另一种也行 = lim ⁡ Δ x → 0 a f ( Δ x ) − f ( 1 ) Δ x = lim ⁡ Δ x → 0 a f ( Δ x ) − a f ( 0 ) Δ x = a lim ⁡ Δ x → 0 f ( Δ x ) − f ( 0 ) Δ x = a f ′ ( 0 ) = a b \begin{aligned} f'(1)&=\lim_{\Delta x\to0}\frac{f(1+\Delta x)-f(1)}{\Delta x}\\ &为了使用f(1+x)=af(x),用另一种也行\\ &=\lim_{\Delta x\to0}\frac{af(\Delta x)-f(1)}{\Delta x}\\ &=\lim_{\Delta x\to0}\frac{af(\Delta x)-af(0)}{\Delta x}\\ &=a\lim_{\Delta x\to0}\frac{f(\Delta x)-f(0)}{\Delta x}\\ &=af'(0)=ab \end{aligned} f(1)=Δx0limΔxf(1+Δx)f(1)为了使用f(1+x)=af(x),用另一种也行=Δx0limΔxaf(Δx)f(1)=Δx0limΔxaf(Δx)af(0)=aΔx0limΔxf(Δx)f(0)=af(0)=ab

2. 微分的概念

定义5(微分):如果 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_{0}+\Delta x)-f(x_{0}) Δy=f(x0+Δx)f(x0)可以表示为
Δ y = A Δ x + o ( Δ x ) ( Δ x → 0 ) \Delta y=A \Delta x+o(\Delta x)\quad(\Delta x\to0) Δy=AΔx+o(Δx)(Δx0)
则称函数 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处可微,称 A Δ x A \Delta x AΔx为微分,记为
d y = A Δ x dy=A \Delta x dy=AΔx

定理2:函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处可微的充分必要条件是 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处可导,且有
d y = f ′ ( x 0 ) Δ x = f ′ ( x 0 ) d x dy=f'(x_{0})\Delta x=f'(x_{0})dx dy=f(x0)Δx=f(x0)dx

3. 导数与微分的几何意义

导数的几何意义:导数 f ′ ( x 0 ) f'(x_{0}) f(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))处切线的斜率
切线方程
y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_{0})=f'(x_{0})(x-x_{0}) yf(x0)=f(x0)(xx0)
法线方程
y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) y-f(x_{0})=-\frac{1}{f'(x_{0})}(x-x_{0}) yf(x0)=f(x0)1(xx0)

微分的几何意义:微分 d y = f ′ ( x 0 ) d x dy=f'(x_{0})dx dy=f(x0)dx在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)的切线上的增量

![[附件/Pasted image 20220812203603.png|300]]
Δ y \Delta y Δy表示曲线上的改变量, d y dy dy表示切线上的改变量
用微分代替函数改变量就是在微小的局部用均匀变化代替非均匀变化

4. 连续可导可微之间的关系

连续不一定可导,可导一定连续;连续不一定可微,可微一定连续。可导可微等价

例2:可导 ⇒ \Rightarrow 可微

f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ⇒ f ( x 0 + Δ x ) − f ( x 0 ) Δ x = f ′ ( x 0 ) + α ⇒ f ( x 0 + Δ x ) − f ( x 0 ) = f ′ ( x 0 ) Δ x + α Δ x = f ′ ( x 0 ) Δ x + o ( Δ x ) \begin{aligned} f'(x_{0})&=\lim_{\Delta x\to 0}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}\\ &\Rightarrow\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}=f'(x_{0})+\alpha\nonumber\\ &\Rightarrow f(x_{0}+\Delta x)-f(x_{0}) =f'(x_{0})\Delta x+\alpha \Delta x=f'(x_{0})\Delta x+o(\Delta x) \end{aligned} f(x0)=Δx0limΔxf(x0+Δx)f(x0)Δxf(x0+Δx)f(x0)=f(x0)+αf(x0+Δx)f(x0)=f(x0)Δx+αΔx=f(x0)Δx+o(Δx)
证毕

f ( x ) 在 x 0 ( 的某邻域 ) 可导 { 能推出 f ( x ) 在 x 0 点连续 推不出 f ′ ( x ) 在 x 0 点连续 推不出 lim ⁡ x → x 0 f ′ ( x ) 存在 f(x)在x_{0}(的某邻域)可导 \begin{cases} 能推出f(x)在x_{0}点连续 \\ 推不出f'(x)在x_{0}点连续 \\ 推不出\lim\limits_{x\to x_{0}}f'(x)存在 \end{cases} f(x)x0(的某邻域)可导 能推出f(x)x0点连续推不出f(x)x0点连续推不出xx0limf(x)存在

例3: f ( x ) = { x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\begin{cases}x^{2}\sin \frac{1}{x},x\ne0\\0,x=0\end{cases} f(x)={ x2sinx1,x=00,x=0
证明: f ( x ) f(x) f(x)处处可导, lim ⁡ x → 0 f ′ ( x ) \lim\limits_{x\to0}f'(x) x0limf(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值