【高等数学基础知识篇】——导数与微分

本文仅用于个人学习记录,使用的教材为汤家凤老师的《高等数学辅导讲义》。本文无任何盈利或者赚取个人声望的目的,如有侵权,请联系删除!

一、导数与微分的基本概念

1.1 导数的基本概念

设y = f(x)在x = a处可导,则f(x)在x = a处导数的等价定义为f’(a) = lim ⁡ Δ x →   0 \lim_{Δx\rightarrow\ 0} limΔx 0 f ( a + Δ x ) − f ( a ) Δ x \frac{f(a + Δx) - f(a)}{Δx} Δxf(a+Δx)f(a) = lim ⁡ h →   0 \lim_{h\rightarrow\ 0} limh 0 f ( a + h ) − f ( a ) h \frac{f(a + h) - f(a)}{h} hf(a+h)f(a) = lim ⁡ x →   a \lim_{x\rightarrow\ a} limx a f ( x ) − f ( a ) x − a \frac{f(x) - f(a)}{x - a} xaf(x)f(a)

lim ⁡ h →   0 − \lim_{h\rightarrow\ 0-} limh 0 f ( a + h ) − f ( a ) h \frac{f(a + h) - f(a)}{h} hf(a+h)f(a) = lim ⁡ x →   a − \lim_{x\rightarrow\ a-} limx a f ( x ) − f ( a ) x − a \frac{f(x) - f(a)}{x - a} xaf(x)f(a)称为f(x)在x = a处的左导数,记为f-'(a)。

lim ⁡ h →   0 + \lim_{h\rightarrow\ 0+} limh 0+ f ( a + h ) − f ( a ) h \frac{f(a + h) - f(a)}{h} hf(a+h)f(a) = lim ⁡ x →   a + \lim_{x\rightarrow\ a+} limx a+ f ( x ) − f ( a ) x − a \frac{f(x) - f(a)}{x - a} xaf(x)f(a)称为f(x)在x = a处的右导数,记为f+'(a)。

划重点

  • 函数f(x)在x = a处导数存在的充要条件是f(x)在x = a处左右导数都存在且相等。
  • 若f(x)在x = a处可导,则f(x)在x = a处连续,反之不对。
  • 设函数f(x)连续,且 lim ⁡ x →   a \lim_{x\rightarrow\ a} limx a f ( x ) − b x − a \frac{f(x) - b}{x - a} xaf(x)b = A,则f(a) = b,f’(a) = A。
  • 偶函数的导数是奇函数,奇函数的导数是偶函数。
  • 周期函数的导数是同周期的周期函数,反之不对。
  • f(x)可导 => f(x)处处有导数;f(x)连续可导 => f’(x)为连续函数。
  • 函数f(x)在x = a处的导数是曲线y = f(x)在点x = a处的切线的斜率,且切线方程为f(x) - f(a) = f’(a)(x - a)
  • 设函数f(x)在x = a处不可导,但是f’'(x)在x = a处不一定不可导。
  • 设函数f(x)在x = a处可导,则|f(x)|在x = a处的可导性如下
    若f(a) ≠ 0,则|f(x)|在x = a处可导
    若f(a) = 0,则当f’(a) = 0时,|f(x)|在x = a处可导;当f’(a) ≠ 0时,|f(x)|在x = a处不可导。

1.2 微分的基本概念

设y = f(x),Δx = x - x0,Δy = f(x0 + Δx) - f(x),若Δy = AΔx + o(Δx),则称f(x)在x = x0处可微,其中AΔx称为y = f(x)在x = x0处的微分,记为dy|x=x0 = AΔx,或dy|x=x0 = Adx。AΔx又称为线性部分。

划重点

  • 可导与可微等价。
  • A = f’(x)
  • 设y = f(x)处处可微,则dy = d[f(x)] = f’(x)dx为y = f(x)的微分。
  • 若f(x)在x = x0处可微,则Δy - dy = o(Δx)。

1.3 连续、可导、可微的关系

  • 若f(x)在x = x0处连续,则|f(x)|在x = x0处连续,反之不对。
  • 若f(x)在x = x0处可导(或可微),则f(x)在x = x0处连续,反之不对。

二、导数与微分的基本概念题目类型

2.1 讨论f(x)在某点处的连续性与可导性

根本还是求极限。用到了两个结论
f(x)在某点连续的充要条件是在该点的左极限等于右极限等于函数值。
f(x)在某点可导的充要条件是在该点的左右导数都存在且相等。

导数与微分的基本概念例题

本题答案是不一定,是通过举例特殊函数在特殊点处的可导性来说明的。

三、求导公式与法则

3.1 求导及求微分的基本公式

原函数一阶导函数特别的
C‘0
(xa)’axa-1( x \sqrt[]{x} x )’ = 1 2 x \frac{1}{2\sqrt[]{x}} 2x 1,( 1 x \frac{1}{x} x1)’ = - 1 x   2 \frac{1}{x\ ^2} x 21
(ax)’axlna(a> 0,a ≠ 1)(ex) = ex
(logax)’ 1 x l n a \frac{1}{xlna} xlna1(a> 0,a ≠ 1)(ln x)’ = 1 x \frac{1}{x} x1

三角函数和反三角函数求导

原函数一阶导函数
(sin x)’cos x
(cos x)’-sin x
(tan x)’sec2 x
(cot x)’-csc2 x
(sec x)’sec x tant x
(csc x)’-csc x cot x
(arcsin x)’ 1 1 − x   2 \frac{1}{\sqrt[]{1-x\ ^2}} 1x 2 1
(arccos x)’- 1 1 − x   2 \frac{1}{\sqrt[]{1-x\ ^2}} 1x 2 1
(arctan x)’ 1 1 + x   2 \frac{1}{1+x\ ^2} 1+x 21
(arccot x)’- 1 1 + x   2 \frac{1}{1+x\ ^2} 1+x 21
(sin x)(n)sin(x + n Π 2 \frac{nΠ}{2} 2nΠ)
(cos x)(n)cos(x + n Π 2 \frac{nΠ}{2} 2nΠ)
( 1 a x + b \frac{1}{ax + b} ax+b1)(n) ( − 1 )   n n ! a   n ( a x + b )   n   +   1 \frac{(-1)\ ^nn!a\ ^n}{(ax + b)\ ^n\ ^+\ ^1} (ax+b) n + 1(1) nn!a n

3.2 反函数求导法则

  • 设函数y = f(x)可导,且f’(x) ≠ 0,则y = f(x)存在可导的反函数x = φ(y),且φ’(y) = 1 f ′ ( x ) \frac{1}{f'(x)} f(x)1
  • 设函数y = f(x)二阶可导,且f’(x) ≠ 0,则y = f(x)存在二阶可导的反函数x = φ(y),且φ’'(y) = f ′ ′ ( x ) f ′   3 ( x ) \frac{f''(x)}{f'\ ^3(x)} f 3(x)f′′(x)

四、隐函数与参数方程确定的函数求导

4.1 隐函数的导数

  • 隐函数概念
    设x,y满足方程F(x,y) = 0(其中x ∈ D),若对任意的x ∈ D,由方程F(x,y) = 0可以有唯一确定的y的与之对应,称方程F(x,y) = 0确定y为x的隐函数。
  • 隐函数存在定理
    设函数F(x,y)在点(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y0) = 0,Fy(x0,y0) ≠ 0,则在(x0,y0)的某一邻域内由方程F(x,y) = 0恒能唯一确定一个连续且具有连续导数的函数y = f(x),它满足y0 = f(x0),并有 d y d x \frac{dy}{dx} dxdy = F x F y \frac{F_x}{F_y} FyFx,其中Fx为F(x,y)对x的偏导数,Fy为F(x,y)对y的偏导数。

4.2 参数方程确定的函数求导

设y = y(x)是由
{ x = φ ( t ) y = ψ ( t ) \begin{cases} x = φ(t)\\[1ex] y = ψ(t) \end{cases} {x=φ(t)y=ψ(t)
确定的函数,其中φ(t),ψ(t)可导且φ’(t) ≠ 0,由
{ x = φ ( t ) y = ψ ( t ) \begin{cases} x = φ(t)\\[1ex] y = ψ(t) \end{cases} {x=φ(t)y=ψ(t)
确定的函数称为参数方程确定的函数,且 d y d x \frac{d_y}{d_x} dxdy = d y d t d x d t \frac{\frac{d_y}{d_t}}{\frac{d_x}{d_t}} dtdxdtdy = ψ ′ ( t ) φ ′ ( t ) \frac{ψ'(t)}{φ'(t)} φ(t)ψ(t)

若φ(t),ψ(t)二阶可导且φ’(t) ≠ 0,则 d   y 2 d x   2 \frac{d\ ^2_y}{d_x\ ^2} dx 2d y2 = φ ′ ( t ) ψ ′ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) φ ′   3 ( t ) \frac{φ'(t)ψ''(t) - φ''(t)ψ'(t)}{φ'\ ^3(t)} φ 3(t)φ(t)ψ′′(t)φ′′(t)ψ(t)

以下两种情形也归结为参数方程的导数

(1)由
{ F ( x , t ) = 0 G ( y , t ) = 0 \begin{cases} F(x,t) = 0\\[1ex] G(y,t) = 0 \end{cases} {F(x,t)=0G(y,t)=0
确定的y = y(x),求 d y d x \frac{d_y}{d_x} dxdy

(2)设函数y = y(x)对应的极坐标形式为r = r(θ),求 d y d x \frac{d_y}{d_x} dxdy

先将r = r(θ)转化成参数形式
{ x = r ( θ ) c o s θ y = r ( θ ) s i n θ \begin{cases} x = r(θ)cosθ\\[1ex] y = r(θ)sinθ \end{cases} {x=r(θ)cosθy=r(θ)sinθ
d y d x \frac{d_y}{d_x} dxdy = r ′ ( θ ) s i n θ + r ( θ ) c o s θ r ′ ( θ ) c o s θ − r ( θ ) s i n θ \frac{r'(θ)sinθ + r(θ)cosθ}{r'(θ)cosθ - r(θ)sinθ} r(θ)cosθr(θ)sinθr(θ)sinθ+r(θ)cosθ

五、隐函数与参数方程确定的函数求导题目类型

5.1 由方程F(x,y)确定的y = y(x),求 d y d x \frac{d_y}{d_x} dxdy

方程两边对x求导,需要注意的是y是x的函数。

5.2 参数方程确定的函数求导

参数方程确定的函数求导

本题不仅涉及到参数方程确定的函数求导,还用到了隐函数求导。

参数方程确定的函数求导

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 导数微分是数学中的两个概念,它们都与函数的变化率有关。导数表示的是函数在一个点的变化率,而微分则表示的是函数在整个区间内的变化率。在数学上,导数可以通过对函数求导来计算,而微分则可以通过求出函数的导数来计算。总的来说,导数更加具体,而微分则更加抽象。 ### 回答2: 导数微分是微积分中两个相关但又不完全相同的概念。 导数表示的是函数在某一点处的变化率,它是函数在该点处的斜率。导数的定义可以通过极限来描述,即导数等于函数在该点的极限。 微分则是指函数在某一点处的微小变化。微分的定义可以用导数表示,即d(f(x))/dx = f'(x)dx,其中d(f(x))/dx 表示函数f(x)的微分,dx 表示自变量x的微小变化量。微分通常用于描述函数的局部变化和近似计算。 可以说,导数是用来描述整个函数的局部性质,而微分是用来描述函数的微小变化。导数可以通过微分来计算,而微分导数的一种具体应用。 从几何意义上来说,导数是函数曲线在某一点处的切线斜率,而微分是函数曲线在某一点处的切线与曲线之间的微小线段。 总结起来,导数是函数变化率的一种表示,微分是函数微小变化的一种描述。导数描述的是整体性质,微分描述的是局部性质。 ### 回答3: 导数微分是微积分中的两个概念,它们表达了函数在某一点的变化率。 导数是函数在某一点的变化率。具体来说,对于给定函数y=f(x),在某点x=a处的导数表示函数在x=a处的斜率,也就是函数在该点的瞬时变化率。导数可以用极限的形式来定义,即导数等于函数在该点附近的两个点之间的变化量的极限。 微分是函数的局部线性近似。具体来说,假设函数y=f(x),在某一点x=a处,用切线来近似曲线。那么微分就是切线的方程,表示函数在该点附近的近似变化情况。微分可以通过导数来计算,即微分等于函数在该点的导数乘以自变量的变化量。 总结起来,导数是函数的变化率,而微分是函数的近似变化情况。导数可以用极限来定义,而微分可以通过导数来计算。导数是一个数值,而微分是一个函数。在实际应用中,导数可以用来求解极值、判断函数的单调性和凸凹性等问题,而微分可以用来进行数值计算和建立微分方程等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二土电子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值