[DFS][洛谷]小埋与扫雷个人总结题解

刚学DFS,二次元发现小埋,立马开做。

原题链接:小埋与扫雷 - 洛谷

tips:解释时一些细枝末节并未在细枝末节展示,看不懂的部分直接拉到本文末尾有部分细节补充。

看题思路:

        1.发现八连通,立马想起lake counting题,开始试图用dfs结题

        2.通过了解3bv(扫雷专用语),思考到需要一路走到死连成一个整体算为1,确信用dfs最舒服。

题意理解:

        1.3bv:最少点击数,个人理解就是空白区+没有和空白区相连的格子数,就是本题答案

解题思路(只介绍dfs如何写):

大体思路:将空白区用其他符号'.'代替,将连着空白区又连着雷的区域用其他符号'-'代替,统计剩下的0的个数和'.'形成大区域(用dfs连接)的个数

        1.需要考虑这和一般区域部分题(如lake counting)不一样,不能直接将0的部分直接化为1,否则无法判断该点符不符合空白区。所以我们需要先判断能否满足空白区条件。判断条件:通过判断该点附近是否有1(也就是有雷),即可判断出是否符合空白区,具体来说,就是8格子都没有雷就代表他是个空白区。

判断具体代码:

for(int dx=-1;dx<=1;dx++){
		for(int dy=-1;dy<=1;dy++){
			nx=x+dx,ny=y+dy;
			if(a[nx][ny]=='1')flag1=1;
		}
	}

解释:外两层循环是个简单的八方位移动的循环,nx,ny是作为假定移动后的变量,flag1用于记录符不符合空白区的变量,如果附近有雷,则为1,后面就可以直接return。

        2.如果能往后运行,就代表它是空白区,以此为原点,开始寻找其他与此点连接在一起的空白区,具体就是继续用八方位探图,并利用判断语句判断是否需要深入dfs探索。

深入具体代码:

for(int dx=-1;dx<=1;dx++){
		for(int dy=-1;dy<=1;dy++){
			nx=x+dx,ny=y+dy;
			if(a[nx][ny]=='0')a[nx][ny]='-';
			if(nx>=0&&ny>=0&&nx<n&&ny<m&&(a[nx][ny]=='0'||a[nx][ny]=='-'))dfs(nx,ny);
		}
	}

解释:将数组化为'-'的解释,由于3bv的性质,它不会将既连着雷又连着空白区的'0'部分算入点击数,所以将其化为'-'避免后面统计点击数时将它统计下来,总的来说就是'-'只用于区分,不作为判断dfs进入的条件,效果暂时与'0'一致,后面也可将'-'化为'.'。至此dfs写完

         3.个人通过本题对dfs的思考(可略):dfs主体使用递归,其分为两部分:(1)判断,(2)深入。本题作为dfs的一个用法,个人总结为连体效果,将部分化为整体算为1个。

全部代码:

#include <bits/stdc++.h>
using namespace std;
const int MAXN=2000;

char a[MAXN][MAXN];
int flag1,flag2;
int n,m,nx,ny,res;

void dfs(int x,int y){
	flag1=0;
	for(int dx=-1;dx<=1;dx++){
		for(int dy=-1;dy<=1;dy++){
			nx=x+dx,ny=y+dy;
			if(a[nx][ny]=='1')flag1=1;
		}
	}
	if(flag1==1)return ;
	a[x][y]='.';
	flag2=1;
	for(int dx=-1;dx<=1;dx++){
		for(int dy=-1;dy<=1;dy++){
			nx=x+dx,ny=y+dy;
			if(a[nx][ny]=='0')a[nx][ny]='-';
			if(nx>=0&&ny>=0&&nx<n&&ny<m&&(a[nx][ny]=='0'||a[nx][ny]=='-'))dfs(nx,ny);
		}
	}
}

int main(){
	ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	cin>>n>>m;
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			cin>>a[i][j];
		}
	}
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			flag2=0;
			if(a[i][j]=='0')dfs(i,j);
			if(flag2==1)res++;
		}
	}
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			if(a[i][j]=='0')res++;
		}
	}
	cout<<res;
}

细枝末节的解释:

        1.flag1作为判断是否能够进入dfs的判断条件,flag2作为是否有1个空白区的判断条件,如果flag2为真,则res增加。

        2.res作为统计最少点击数的变量。

对于洛谷上的p1036题目,我们可以使用Python来解决。下面是一个可能的解法: ```python def dfs(nums, target, selected_nums, index, k, sum): if k == 0 and sum == target: return 1 if index >= len(nums) or k <= 0 or sum > target: return 0 count = 0 for i in range(index, len(nums)): count += dfs(nums, target, selected_nums + [nums[i]], i + 1, k - 1, sum + nums[i]) return count if __name__ == "__main__": n, k = map(int, input().split()) nums = list(map(int, input().split())) target = int(input()) print(dfs(nums, target, [], 0, k, 0)) ``` 在这个解法中,我们使用了深度优先搜索(DFS)来找到满足要求的数列。通过递归的方式,我们遍历了所有可能的数字组合,并统计满足条件的个数。 首先,我们从给定的n和k分别表示数字个数和需要选取的数字个数。然后,我们输入n个数字,并将它们存储在一个列表nums中。接下来,我们输入目标值target。 在dfs函数中,我们通过迭代index来选择数字,并更新选取的数字个数k和当前总和sum。如果k等于0且sum等于target,我们就找到了一个满足条件的组合,返回1。如果index超出了列表长度或者k小于等于0或者sum大于target,说明当前组合不满足要求,返回0。 在循环中,我们不断递归调用dfs函数,将选取的数字添加到selected_nums中,并将index和k更新为下一轮递归所需的值。最终,我们返回所有满足条件的组合个数。 最后,我们在主程序中读入输入,并调用dfs函数,并输出结果。 这是一种可能的解法,但不一定是最优解。你可以根据题目要求和测试数据进行调试和优化。希望能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值