最近被TPAMI24上一篇文章惊艳到了!作者通过把频域与特征融合结合,几行代码,就能暴力涨点!且在目标检测、语义分割、实例分割等领域都性能显著!
这主要得益于,两者结合,为模型提供了更加全面和准确的数据表示!频域方法能够提取到传统方法捕捉不到的频域特征,而特征融合则能有效的把这些信息与其他各类特征融合。
因此,其也成为了当下重要且热门的研究方向,称霸顶会!除前文所提,还有CVPR的Poseformer、AAAI的FSRU……
为让大家能够深入理解该思路,实现高效涨点,早点发出自己的顶会,我给大家准备了12种创新套路和源码,一起来看!
论文原文+开源代码需要的同学看文末
Poseformerv2: Exploring frequency domain for efficient and robust 3d human pose estimation
内容:文章提出一种方法,用于3D人体姿态估计,它通过在频域中探索长骨架序列的紧凑表示来提高效率和对噪声2D关节检测的鲁棒性,与原始PoseFormer相比,在速度-准确性权衡和对2D关节检测噪声的鲁棒性方面显著提高了性能。
Swinfsr: Stereo image super-resolution using swinir and frequency domain knowledge
内容:文章提出一种新型的立体图像超分辨率方法,它基于SwinIR扩展而来,并结合了快速傅里叶卷积(FFC)获得的频域知识。该方法通过修改SwinIR中的残差Swin Transformer块,引入频域知识,并提出一个新的交叉注意力模块RCAM,以实现立体视图间高效准确的特征融合,实验结果表明SwinFSR在效率和效果上都优于现有方法。
MDFL: Multi-Domain Diffusion-Driven Feature Learning
内容:文章提出一种多域特征学习方法,它通过扩散驱动的方式促进不同域间的特征表示学习,以提高模型在跨域任务中的泛化能力和性能。这种方法特别适用于处理源域和目标域之间存在显著差异的情况,通过模拟数据生成过程,增强模型对不同域数据的适应性和鲁棒性。
A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion
内容:文章介绍了一种基于小波变换和软注意力机制的新型皮肤癌分类模型,该模型通过一个新颖的注意力模块来识别皮肤病变特征在空间维度和对称性上的差异,同时结合梯度基础的特征融合方法来提取皮肤病变的边界信息,以提高对不同类别皮肤癌的分类准确性。在HAM10000数据集上进行测试时,该模型取得了91.17%的F1分数和90.75%的准确率。
码字不易,欢迎大家点赞评论收藏!
关注下方《AI科研技术派》
回复【频域特征】获取完整论文
👇