绝绝子!时间序列+傅里叶变换,横扫一区!新作性能爆涨50.13%!

今天给大家推荐一个好中高区的idea:傅里叶变换+时间序列

近来其可谓是风靡NeurIPS、ICLR、ICML等顶会,成果颇丰!像是性能飙升50.13%的Diffusion-TS模型、参数量直降20%的FourierGNN模型……

主要在于:一方面,傅里叶变换在揭示时序数据的内在规律和特征,提高模型的准确性和预测性能方面,不可替代!它能将时序数据从时域转换到频域,提供数据在频率上的特征信息,从而帮助我们更深入地理解数据的周期性、趋势性以及其他潜在模式。且相比其他技术,其还非常高效、易实现。另一方面,以往时序研究着眼时域方面较多,如今频域研究刚拉开帷幕,而这其中傅里叶变换就是重要技术,创新机会很多!

为让大家能够把准领域主流研究方法,早点发出自己的顶会,我给大家准备了12种创新思路,原文和源码都有!

论文原文+开源代码需要的同学看文末

Frequency Adaptive Normalization For Non-stationary Time Series Forecasting

内容:论文提出了一种名为频率自适应归一化的新方法,用于非平稳时间序列预测。FAN通过傅里叶变换识别输入实例中的主要频率成分,这些成分涵盖了大多数非平稳因素,并通过一个简单的MLP模型显式建模输入和输出之间这些频率成分的差异。FAN是一个模型无关的方法,可以应用于任意预测模型,并且在多个基准数据集上展示了显著的性能提升。

TSLANet: Rethinking Transformers for Time Series Representation Learning

内容:论文介绍了一种名为TSLANet的新型时间序列轻量级自适应网络,它通过结合傅里叶分析和自监督学习来增强特征表示,并捕获长期和短期的依赖关系,同时减少噪声。TSLANet在分类、预测和异常检测等多种时间序列任务中表现出色,超越了现有的最先进模型,展示了其在不同噪声水平和数据规模下的适应性和鲁棒性。

FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective

内容:论文提出了一种名为FourierGNN的新型图神经网络架构,用于多变量时间序列预测。该架构从纯图的角度重新思考问题,通过构建超变量图结构来统一考虑时空动态,并通过在傅里叶空间中堆叠傅里叶图算子(FGO)来执行矩阵乘法,以较低的复杂度有效地捕捉多变量时间序列数据中的时空依赖关系。实验结果表明,FourierGNN在多个真实世界的基准数据集上实现了比现有最先进方法更高的预测准确性和效率。

Fredformer: Frequency Debiased Transformer for Time Series Forecasting

内容:论文介绍了一种名为Fredformer的新型时间序列预测模型,该模型旨在解决传统Transformer在处理复杂时间序列数据时出现的频率偏差问题。Fredformer通过在不同频率带之间平等地学习特征来减轻这种偏差,防止模型忽略对准确预测至关重要的低幅度高频特征。该模型基于傅里叶变换,通过学习不同频率带的特征并结合注意力机制来提高预测性能,并提出了一种轻量级变体,通过近似注意力矩阵来减少参数数量和计算成本。

码字不易,欢迎大家点赞评论收藏!

关注下方《AI科研技术派》

回复【FFTS】获取完整论文

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值