LSTM不愧是高区收割机!光是Nature和CVPR等就有多篇。比如性能飙升的LTNN、准确率近100%的ATBTS……
主要在于,LSTM能够有效解决梯度消失和梯度爆炸问题,且具有记忆功能,能保存长期的上下文信息,从而使模型能更好地理解和预测未来趋势,提高性能!
值得一提的是,近来更是涌现了不少发论文的新机会!首先是其原创作者亲自下场,提出了xLSTM和Visioi-LSTM改进模型,克服了其缺乏并行能力、存储容量有限等局限,性能远超Transformer!再加上Mamba和KAN等新技术的助力。这些都给论文创新提供了空间,以往卷不动的任务,都可以用其重做一遍。
为让大家能够紧跟领域前沿,找到更多灵感启发,我给大家准备了47种创新思路和源码,主要涉及LSTM的改进、与其他前沿技术的结合。
论文原文+开源代码需要的同学看文末
LSTM变体
Vision-LSTM: xLSTM as Generic Vision Backbone
内容:这篇文章介绍了一种新型的计算机视觉架构——Vision-LSTM(ViL),它是对扩展的长短期记忆网络(xLSTM)在计算机视觉领域的适应性改进。ViL通过堆叠xLSTM模块来处理图像,其中奇数层从上到下处理图像块,偶数层从下到上处理,这种交替设计使其能够高效处理非序列化的图像输入。实验表明,ViL在ImageNet-1K图像分类、ADE20K语义分割和VTAB-1K迁移分类等任务上表现出色,优于或媲美现有的Transformer和状态空间模型(SSM)架构。此外,ViL在处理高分辨率图像任务时具有线性计算复杂度,这使其在医学成像、分割等领域具有潜在优势。
LSTM+Transformer
Time series prediction model using LSTM‑Transformer neural network for mine water inflow
内容:这篇文章提出了一种基于LSTM-Transformer神经网络的时间序列预测模型,用于预测矿山涌水量。矿山水害事故频繁发生,准确预测涌水量对于预防洪水至关重要。然而,涌水量具有非线性和不稳定性,难以预测。为此,研究者们结合了Transformer算法(依赖自注意力机制)和LSTM算法(擅长捕捉长期依赖关系),开发了一种新的预测模型。
LSTM+Mamba
VMRNN:Integrating Vision Mamba and LSTM for Efficient and Accurate Spatiotemporal Forecasting
内容:本文提出了一种名为VMRNN的新型时空预测模型,旨在高效且准确地进行时空预测。该模型结合了Vision Mamba模块和LSTM架构,通过创新的VMRNN单元,能够有效捕捉时空数据中的复杂动态。Vision Mamba模块基于选择性扫描空间状态序列模型(S6 Block),能够以线性复杂度处理长序列数据,从而在保持高效的同时,显著提升模型对全局空间信息的建模能力。
LSTM+注意力
Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM
内容:本文提出了一种结合图注意力网络(GAT)和长短期记忆网络(LSTM)的新型轴承故障检测方法,旨在提高工业机械中轴承故障诊断的准确性。该方法通过将时间序列传感器数据转换为图表示,利用GAT捕捉组件之间的空间关系,同时利用LSTM建模时间模式。实验使用了案例西部保留大学(CWRU)轴承数据集进行验证,结果表明,该模型在各种测试条件下均实现了100%的精确度、召回率和F1分数,不仅能够准确识别故障,还能有效泛化到不同的操作场景中,优于传统方法。
LSTM+CNN+Attention
A CNN-BiLSTM Model with Attention Mechanism for Earthquake Prediction
内容:本文提出了一种基于卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(AM)的新型混合模型,用于地震预测。该模型利用CNN提取地震数据的空间特征,BiLSTM捕捉时间序列的长期依赖关系,注意力机制则突出对预测结果影响较大的特征,从而提高预测性能。研究以中国大陆地区的历史地震目录为基础,预测未来一个月内各区域的地震数量和最大震级。实验结果表明,该模型在预测地震数量和最大震级方面均优于其他传统机器学习和深度学习方法,具有更好的性能和泛化能力。
LSTM+KAN
TKAN: Temporal Kolmogorov - Arnold Networks
内容:本文提出了一种新型的神经网络架构——时序科洛莫戈罗夫-阿诺德网络),用于时间序列预测。TKANs结合了循环神经网络(RNN)和科洛莫戈罗夫-阿诺德网络(KANs)的优点,通过引入循环科洛莫戈罗夫-阿诺德网络(RKANs)层和长短期记忆(LSTM)单元,有效管理时间序列中的记忆状态,从而提高多步预测的准确性和效率。实验表明,TKANs在处理复杂时间序列数据时优于传统的LSTM和GRU模型,尤其在长期预测中表现出更高的稳定性和预测性能。
码字不易,欢迎大家点赞评论收藏!
关注下方《AI科研技术派》
回复【LSTM魔改】获取完整论文
👇