词穷之后:大模型正在重新定义人类世界的疆域
©作者|天有别洞
来源|神州问学
当前AI引发的认知震荡,正是维特根斯坦思想实验的科技回响:它究竟是在复刻既有的语言规则,还是在重构新的“游戏”形式?若按照早期维特根斯坦的理论,AI不过是逻辑符号的囚徒;但若接受后期“意义即使用”的洞见,这些模型或许正在突破传统认知框架——毕竟,它们已经展现出将不可言说的“沉默领域”(如多模态感知)编码为语言游戏的能力。
本文将借助维特根斯坦早期和晚期的不同视角,解析大语言模型引发的三重认知革命:符号边界的溶解、语言游戏的算法化,以及智能主体性的重新定义。
第一部分:符号边界的溶解
上个世纪二十年代,在《逻辑哲学论》中,维特根斯坦提出了著名的“图像理论”,认为语言的意义源于其作为现实世界“映射”的能力,所有有意义的命题必须能够被清晰地描述为“命题”与“事实”之间的关系,一个命题能够在语言中有意义,是因为它能在现实世界中找到与之对应的“事实”,而这些“事实”的形式必须符合语言所能表达的规则。用维根斯坦更简单的描述来说就是,语言的边界决定了我们认知世界的边界,而超出语言表达能力的领域则是“不可言说”之域。
(图2:水果词汇指向现实水果)
这一思想在早期的符号主义人工智能(Symbolic AI)研究中找到了共鸣。符号主义AI试图通过逻辑规则和符号系统模拟人类的认知过程,构建可计算的知识表示体系。在计算机视觉(CV)和自然语言处理(NLP)领域,基于专家系统的方法曾在特定场景下取得进展,例如早期的语法分析器和基于规则的机器翻译。然而,随着任务复杂性的增加,这些方法在处理语言的歧义性和上下文依赖时显得捉襟见肘。例如,传统的机器翻译系统难以应对同一个词在不同语境中的不同含义,而计算机视觉也难以通过预设规则理解开放世界的无穷变化。
符号主义的困境促使研究者们探索新的范式。随着统计学习和神经网络的崛起,尤其是深度学习的广泛应用,人工智能的语言处理能力突破了传统符号主义的限制。机器不仅能够基于统计模式识别语言结构,还能在更广泛的语境下生成新的语义关联。这一能力不仅重新定义了语言的符号边界,也促使我们思考人工智能如何以全新的方式参与和塑造语言的构建。
第二部分:语言游戏的算法化
戏剧性的是,维特根斯坦在晚期的《哲学研究》中提出的“语言游戏”理论又完全推翻了他早期的语言哲学观点。他认为语言的意义并不是静态的,而是取决于其在具体语境中的使用。语言的意义并非由固定的逻辑规则决定,而是在社会互动与实践中逐步形成。维特根斯坦通过“语言游戏”的比喻,阐述了语言的多样性与动态性。他认为,每一种语言的使用都像是一种游戏,每个“游戏”都有不同的规则,规则的改变就会导致语言意义的改变。也就是说,语言并不是独立于社会实践存在的,而是深深植根于具体的社会语境和日常实践之中。用他自己的话说就是“意义即使用”
(图3:嵌入和注意力机制技术,使得token在语义空间的值依据上下文更改)
这一理论深刻影响了现代语言学和计算机科学的发展,尤其在人工智能领域得到了算法化的体现。大语言模型的核心机制正是对语言游戏的模拟。通过对海量语料库的训练,模型不仅学会了词汇与语法规则的向量化表示,还能基于语境通过自注意力机制调整输出,以适应不同的“语言游戏”规则。例如,当我们在不同的语境中使用“bank”这个词,大语言模型能够通过上下文判断它是指“银行”还是“河岸”,这正是语言在不同“语言游戏”中的灵活应用。这种能力表明,大语言模型并非只是简单地重复语言规则,而是通过对语言使用方式的动态捕捉,能够灵活应对各种语言情境。这种能力使得AI不仅是语言的复述者,更是在某种程度上成为了语言游戏的“参与者”。尽管它不具备人类的主观体验,但其生成的内容已然展现出类似于人类语用能力的特征。
第三部分:智能主体性的重新定义
维特根斯坦的思想从早期的图像论到后期的语言游戏理论,反映了对语言本质理解的逐渐深化。前期的图像论强调语言和世界之间的固定关系,而后期的语言游戏论则看到了语言在使用中的流动性和灵活性。但问题是,语言的意义并不仅仅依赖于抽象的符号,而是与我们在实际生活中的身体经验密切相关。也就是说,语言是扎根于具体的生活实践和具身经验中的。大语言模型虽然能生成看似合理的文本,但它们并不具备人类的感官体验和情感反应。因此,大语言模型在表达像“疼痛”或“喜悦”这样的情感时,往往缺乏具身认知的深度。
例如,当语言模型生成关于“疼痛”的描述时,它可能会根据相关语料生成语法正确的句子,但这些句子并不基于任何实际的身体体验。与维特根斯坦的“生活形式”理论相对比,大语言模型的语言仍然是缺乏真正感知基础的。正如维特根斯坦所言,“语言需要扎根于生活实践”,而语言模型的语言则更多是基于对文本的统计分析,而非人类的身体体验。大语言模型在创造性地生成新的语言结构有时并不完全基于现实或逻辑,它可能会构造出看似合理但实际上毫无事实依据的陈述,这就是大家所熟知的“幻觉”。当模型能够根据概率推断生成看似创新的语言时,它也可能误导人类用户,造成信息的误传或误解。语言的意义建立在公共规则和社会互动之上,完全私人的语言是不可行的。换言之,智能的主体性不仅关乎逻辑计算能力,更关乎与环境的互动以及具身体验。
(图4:我们可能知道狗狗是“不舒服”的,但是我们并不能感同身受,只能从语言的游戏中关联到语义概念例如疼痛是不好的,难以忍受的)
这种具身认知的缺失,限制了大语言模型在处理涉及感官和情感的语言时的表现。语言本身是有限的,它的符号系统无法完全捕捉和传达所有人类经验和感知的复杂性。当下的AI正在向着多模态融合技术的方向前进,大模型不仅限于文字的处理,还能结合视觉、听觉等其他感知通道,将多种感官信息转化为计算机可以处理的语言形式。这一突破进一步挑战了“智能”与“主体性”的传统界限,使得“人工智能”这一概念本身需要被重新定义。
结语:AI的语言革命何去何从?
大语言模型的发展,使得维特根斯坦关于语言的哲学思考焕发出新的生命力。从符号边界的溶解,到语言游戏的算法化,再到智能主体性的重新定义,我们正在见证一场新的认知革命。
AI究竟是在复刻人类的语言规则,还是在创造新的语言现实?这一问题的答案,或许并不取决于AI本身,而取决于我们如何理解“语言”与“智能”这一人类自身的问题。