自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(143)
  • 收藏
  • 关注

原创 Gemini 3.0 科普:Google 这次把 AI 做成“能看懂世界的助手”了

摘要:Gemini 3.0正在从单纯的聊天AI进化为能观察、分析和解决问题的数字助手。它具备多模态能力,能同时处理图片、视频、音频和文档,像人类一样"理解世界"而非简单识别。相比ChatGPT,Gemini更擅长分析结构、拆解复杂任务和图文视频理解。其核心升级包括:观察界面逻辑、分步执行长任务、处理超长内容等。未来,Gemini可能成为职场人的分析伙伴、文档阅读器和信息整理助手,代表AI正从"会聊天"向"能理解世界"的方向发展。

2025-12-19 15:37:52 464

原创 世界模型:AI的下一个里程碑

摘要:世界模型是AI理解物理世界的核心技术,从心理学"心智模型"概念发展而来。通过低维表征、动态预测和反事实推理,世界模型让AI具备物理规律认知能力。OpenAI的Sora视频生成系统展示了世界模型的实际应用,虽仍存在物理交互不完善等问题,但已展现出3D空间理解能力。该技术在机器人、自动驾驶和游戏领域有广阔前景,但面临数据质量、物理一致性和计算效率等挑战。与语言模型互补,世界模型正推动AI从语言智能向空间智能转变,成为未来AI发展的重要方向。(149字)

2025-12-18 17:30:16 694

原创 每周技术加速器:为什么下一代AI的竞争是“上下文操作系统“之争?

摘要: 下一代AI竞争正从模型调优转向"上下文操作系统"设计。本文探讨了AI开发从提示词工程到上下文工程的范式迁移,揭示了构建智能上下文管理系统的四大核心功能:内存管理、任务调度、工具调用和缓存策略。文章指出,单纯增加上下文长度会导致性能衰减,并提出多级记忆系统、动态上下文窗口等解决方案。未来趋势包括RAG与长上下文的协同、记忆精细化治理以及多模态上下文融合。作者强调,AI应用的竞争优势将取决于上下文架构的设计质量而非模型规模,呼吁开发者完成从"操作员"到"

2025-12-12 11:32:15 966

原创 使用大语言模型从零构建知识图谱(下)

本文介绍了使用LangChain的LLMGraphTransformer从文本构建知识图谱的方法。通过将电影数据集转换为文本文档,利用语言模型自动提取实体和关系,生成图结构文档并导入Neo4j数据库。文章详细说明了LLMGraphTransformer的参数配置、数据处理流程和异步转换过程,并展示了生成的节点和关系示例。最后演示了如何通过GraphCypherQAChain实现文本到Cypher查询的转换,进行图谱查询。这种方法显著提升了知识图谱构建的自动化程度,但作者指出仍需优化图谱结构和检索机制,未来将

2025-12-10 11:40:54 814

原创 一个“神级”外挂——Google NotebookLM

它给我安全感和边界感,安全感体现在:每一个回答,它都会在句子末尾给你标一个小小的数字引用,你鼠标放上去,左边的原文就会自动高亮。在这个信息爆炸到让人窒息的年代,我们缺的从来不是生成更多垃圾文字的AI,而是一个能帮你把厚书读薄、把复杂变简单、把枯燥变有趣的工具。现在的AI圈子有个怪象:每天都有新模型号称“拳打GPT,脚踢Claude”,但真到了我们干活的时候,打开的界面依然是那几个熟悉的聊天框。如果你的电脑里躺着几百个用来“吃灰”的 PDF,或者你有永远听不完的播客、永远读不完的研报,这篇文章就是为你写的。

2025-12-09 15:45:08 741

原创 Gemini 3.0 Pro Preview 实测报告

Gemini 3.0带来AI开发革命性升级,在推理深度、多模态理解和智能体构建上实现跨代突破。相比Gemini 2.5,新版本显著简化提示词工程,大幅提升视觉生成质量,在游戏开发、网页设计等场景中展现更专业的设计感和完成度。性能测试显示其在学术推理、编程能力和工具调用等方面全面领先,但预览版稳定性仍有待提升。配套发布的Antigravity IDE构建了从模型到开发工具链的完整生态,标志着AI正从代码助手向"开发伙伴"角色转变。

2025-11-26 14:50:37 913

原创 「干货长文」强化学习完全指南:从基础MDP到TRPO/PPO/GRPO算法演进

本文系统梳理了强化学习在大型语言模型(LLM)中的应用与发展。从马尔可夫决策过程(MDP)和贝尔曼方程等基础理论出发,详细分析了动态规划、蒙特卡洛和时序差分等经典算法,并深入探讨了PPO、GRPO等前沿优化方法。文章特别关注了强化学习如何通过任务拆解和奖励机制提升LLM的复杂问题解决能力,以及RLAIF、多智能体协同等未来发展方向。研究表明,强化学习正推动LLM进入2.0时代,成为实现模型对齐和提升推理能力的关键技术。

2025-11-21 11:28:42 750

原创 效率翻倍!“Deep Research”技术,如何让你从信息海洋中精准淘金?

另一种是“认知增强”论,认为通过将繁琐、重复的低层次认知任务自动化,AI能解放我们的心智资源,让我们专注于更高层次的创造性、战略性思考,成为我们“延伸的大脑”。“天工”的架构中,“5大专家智能体”(分别专精于文档、PPT、表格、播客和网页的生成)和连接了众多工具的“通用智能体”,就扮演了这些专业化的“研究员”角色。这背后的根源在于,大语言模型的本质是概率性的“文字接龙”大师,而非事实数据库,它通过计算来预测下一个最有可能出现的词语以追求语言上的通顺,有时这会导致它“杜撰”出违背事实的细节。

2025-11-14 16:11:08 522

原创 最高推理效率提升100%+|让满血DeepSeekV3.1在L40S上大展身手

深度求索公司发布DeepSeekV3.1大模型,采用混合推理架构,支持思考与非思考模式切换。针对vLLM推理框架在跨节点通信的瓶颈,团队实施多项优化:1)计算图重排减少通信开销;2)采用分层多源广播模式;3)将Broadcast迁移至Ring All-Gather;4)优化All-Reduce为Reduce-Scatter+All-Reduce;5)设计混合并行策略解决负载均衡问题。通过计算维度变换,将AllReduce转为All-to-All+AllGather,显著降低通信开销。测试显示优化后性能最高提

2025-10-21 14:38:26 841

原创 A I智能革命——上下文工程新突破

摘要:AI交互正从提示词工程转向上下文工程,通过"写、选、压、隔"四大策略解决智能助手常见痛点。"写"策略赋予AI长期记忆能力;"选"策略实现精准知识筛选;"压"策略高效压缩信息;"隔"策略实现多Agent任务分解。这种思维转变将AI从工具升级为具有"认知自觉"的智能实体,但依然面临成本控制、安全保障等挑战。掌握这些策略能帮助开发者构建更健壮高效的AI应用,推动AIAgent向自我学习、自

2025-09-25 17:07:14 874

原创 【AI洞察】别再只想着“让AI听你话”,人类也需要学习“适应AI”!

AI与人类应实现双向对齐:研究提出人机协同新范式 最新研究指出,传统"人机对齐"过于单向,强调AI需双向理解人类价值,同时人类也应提升AI素养。论文提出双向对齐框架:一方面优化AI对人类价值的理解(69种核心价值分类),另一方面培养人类对AI的理解力与批判性思维。研究建议通过多模态互动、可扩展监督和长期共进策略,构建人机协同关系,而非简单的主从控制。该框架为AI伦理发展提供了新思路,强调人机关系是双向适应与共同进化的过程。

2025-09-25 17:05:47 329

原创 全球第一个专业设计类AI Agent:Lovart

《Lovart:垂直深耕的AI设计Agent,让创意效率提升300%》 摘要:2025年AI Agent爆发元年,通用型产品面临落地难题。Lovart作为专业设计Agent脱颖而出,通过"规划+执行+交付"全链路设计能力,实现创意效率300%的提升。核心功能包括:1)自动化任务拆解;2)多模态模型集成;3)智能图文分离技术;4)三种专业设计模式。在品牌视觉设计场景中,Lovart能快速生成高质量概念图和视频,简化传统多平台切换的复杂流程。与追求"万能"的通用Agent

2025-09-05 10:27:37 843

原创 2025中国AI客户端巅峰之战:超域博弈与熵减革命

AI客户端竞争已进入资源调度范式重构阶段,五强选手在技术路线和生态协同上展开激烈角逐。苹果端AI应用下载榜显示,DeepSeek、豆包等产品增速显著,但用户面临严重认知过载问题。五强产品各具特色:夸克专注极速搜索、DeepSeek强化技术性能、豆包依托抖音流量、腾讯元宝深耕长文本处理、纳米AI聚焦专业场景。技术突破集中在神经形态计算领域,IBM TrueNorth架构等创新正在重构人机交互范式。这场竞争本质是"熵减效率"的较量,获胜者需在技术突破与用户体验间找到平衡点,重新定义人机协同的

2025-09-05 10:25:57 1261

原创 Graph-RAG全面综述:如何用知识图谱+大模型解决信息检索难题?

本文《GraphRetrieval-AugmentedGeneration:ASurvey》综述了图增强检索生成(GraphRAG)技术,提出了一种整合图结构信息来解决大语言模型幻觉、知识缺乏等问题的框架。文章系统化梳理了GraphRAG三大核心环节:基于图的索引构建、图引导的检索策略和图增强的生成方法,并详细分析了各环节的技术实现与优化方向。研究指出,图数据的高质量索引是基础,需结合业务需求设计个性化图结构;检索阶段需平衡效率与准确性,采用混合检索器与多粒度策略;生成阶段则需适配不同任务选择合适的生成模型

2025-08-29 15:45:19 910

原创 Skywork:昆仑万维推出天工超级智能体

智能体系统,覆盖文档、PPT、表格、网页、播客五大高频场景,并依托通用智能体实现跨模态创作(如图片、音乐、视频生成)形成强大的多模态协同能力,结合其深度研究能力与灵活交互方式,真正为用户提供了一个集效率与品质于一体的解决方案。它不仅是一个工具,更像是一位具备“专。确认工作步骤后,Skywork将分阶段执行任务,其具备超强的Deep Research能力,通过调用MCP实现子步骤功能,并将具体步骤呈现给用户,所有文本与图片生成结果均自带信源标签,并根据搜索和分析得到的内容撰写总结,增强其可信度。

2025-08-29 15:44:11 1223

原创 Google、OpenAI和Anthropic Agent开发框架哪家强?

AI智能体开发领域三巨头技术对比:Google ADK采用A2A协议,支持多模态通信和复杂工作流,适合企业级协作;OpenAI SDK专注安全护栏功能,适合高风险场景;Anthropic ClaudeCode SDK强化代码能力,提示缓存可降本90%,适合开发场景。建议根据项目需求选择:复杂协作选Google,安全敏感选OpenAI,代码开发选Anthropic。随着模型能力提升,Agent功能正逐步内化,未来开发将更高效。

2025-08-29 15:41:51 1009

原创 让大模型“记住”更多:RAG与长期记忆

RAG技术与长期记忆的融合实践 OpenAI近期强化了ChatGPT的记忆功能,通过RAG(检索增强生成)技术结合长期记忆系统,使AI既能调用外部知识库,又能记住用户个性化信息。RAG通过检索外部数据解决大模型"幻觉"问题,而长期记忆则采用向量数据库、结构化插槽和自动总结三种方式存储用户历史对话。当前主流方案是混合架构,如mem0的轻量级框架和MemGPT的类人脑记忆系统。二者的结合将重塑AI角色,在企业服务、智能客服和教育等场景实现更人性化交互。未来,具备上下文记忆能力的AI将更接近通

2025-06-18 17:12:51 1129

原创 AutoGLM沉思版:智能体推理的Deep Research探索

在这三大方向上,AutoGLM沉思版已呈现出一定的“前技术形态”:其内嵌的Operator工具集本质上为Agent OS提供了工具调用基础,其任务拆解与多轮推理机制初步构建了任务状态图,而通过不同推理Agent的阶段调用与信息反馈,也开始探索原始形态的智能体协同机制。举例而言,若提示其“请写一篇MCP和Function Call机制的技术差异报告”,系统将自动检索主流论文与API文档,在沉思推理过程中动态规划结构,输出多层级的技术对比分析,甚至带图表与引用文献。

2025-06-13 11:16:45 820

原创 从DeepSeek-V3到DeepSeek-R1:中国AI团队的技术突破与创新

中国AI团队DeepSeek通过创新技术实现突破性进展。其DeepSeek-V3采用混合专家架构(MoE)和独创的多头潜在注意力机制(MLA),在保持高效推理的同时实现性能提升。最新发布的DeepSeek-R1则通过多阶段强化学习训练策略,显著增强模型的推理能力与安全性。团队不盲目追求参数量,而是通过架构创新和算法优化,使模型在同等资源下表现更优。这些突破性技术标志着中国AI从"跟跑"向"领跑"转变,为全球人工智能发展贡献了新的技术范式。

2025-06-13 11:14:53 830

原创 深度解析MCP协议

MCP协议是Anthropic推出的标准化协议,用于规范大型语言模型与外部数据源及工具的交互方式。该协议采用客户端-服务器架构,包含主机、客户端和服务器三个核心组件,支持工具调用、数据访问和提示模板等功能。通过Python SDK可实现项目初始化、服务器部署等操作,使AI模型能够执行复杂任务如数据写入Elasticsearch索引等。MCP协议的推出将推动AI从封闭系统向开放智能代理发展,有望构建全新AI工具生态,为开发者提供创新机遇,同时为企业深度整合AI与业务流程提供标准化路径。

2025-05-30 13:16:58 1090

原创 大模型哲学:语言的边界就是世界的边界

文章探讨了大语言模型(AI)如何重新定义人类认知和语言边界,借助维特根斯坦的哲学理论进行分析。维特根斯坦早期认为语言是现实的映射,而后期则强调语言的意义在于其使用。AI的发展突破了传统符号主义的限制,通过统计学习和神经网络,AI不仅能够识别语言结构,还能生成新的语义关联,模拟“语言游戏”。然而,AI缺乏人类的具身经验,限制了其在处理感官和情感语言时的表现。随着多模态技术的发展,AI正在融合视觉、听觉等感知通道,进一步挑战“智能”与“主体性”的传统定义。文章最终提出,AI的语言革命不仅是对人类语言规则的复刻,

2025-05-14 17:44:16 1721

原创 DeepSearcher:开启智能搜索新纪元,赋能企业级数据研究

DeepSearcher是一款创新的智能搜索工具,专为满足企业级数据研究需求而设计。它结合了大型语言模型、超级搜索功能和本地化部署的优势,提供了一个高效、灵活且经济的研究解决方案。DeepSearcher通过将复杂查询拆解为多个子问题,利用智能查询路由和动态检索技术,从多个数据源中提取和整合信息,确保搜索结果的全面性和准确性。此外,其支持私有化部署,保障了数据的安全性和隐私性。DeepSearcher的AgenticRAG架构使其在处理复杂推理任务和报告生成方面表现出色,广泛应用于学术研究、市场分析等领域,

2025-05-14 17:41:41 1049

原创 24G显存也能跑DeepSeek-R1 671B?Ktransformers!

随着大语言模型技术的快速发展,模型参数规模不断扩大,显存需求也随之激增。如何在保证推理性能的同时降低显存占用,成为科研人员关注的重点。2025年1月,DeepSeek团队发布了DeepSeek-r1模型,尽管其性能逼近OpenAI的GPT-o1,但其671B的参数量使得推理所需显存高达数百GB,通常需要配备至少8张80GB显存的H800服务器。对于个人开发者和爱好者而言,这种硬件配置成本高昂。然而,清华大学KVCache.AI项目团队联合ApproachingAI开发的Ktransformers框架,通过内

2025-05-14 17:37:40 1202

原创 数智驱动——AI:企业数字化转型的“超级引擎”

随着生成式AI技术的快速发展,企业数字化转型进入新阶段。AI大模型如DeepSeek、GPT-4o等,正从通用型向行业垂直领域延伸,推动企业基础设施的智能化变革。多模态模型、强化学习等技术进一步拓展了AI的应用场景,助力企业在复杂业务中实现高效决策和资源优化。AI不仅提升了企业效率,还重构了商业模式,优化了客户体验。通过本地化部署,企业确保了数据隐私和安全,同时提升了数据处理速度和精度。AI与云计算、5G等技术的深度融合,为企业提供了强大的计算能力和灵活的资源配置,推动了全行业的智能化和数字化转型。未来,企

2025-05-14 17:35:23 1007

原创 “十倍工程师”还有多远?

准备好了吗?我要打10个?©作者|Zhongmei来源|神州问学十倍工程师(10x Engineer)指代那些被认为效率远超普通工程师的程序员。这个话题总是引发强烈的情绪反应,因为它触及了一些深层次的观念:是否真的存在天赋高低的差异?这种差异是与生俱来的还是可以改变的?如果确实存在,我们应该如何对待这些不同的人?因此,是科技领域备受争议的概念:支持者认为,认为10倍工程师的存在是不言自明的事实,,其技术能力在解决复杂问题时表现尤为突出。例如,LeetCode竞赛中顶尖选手的效率可比普通开发者高出数十倍。否认

2025-05-14 17:17:15 643

原创 “小显存”也能启动大模型

DeepSeek技术通过创新的混合专家架构(MoE)解决了传统大模型在计算资源和效率上的瓶颈。MoE架构通过动态选择最合适的专家网络来处理不同任务,显著提高了计算效率和资源利用率。这种架构包括专家网络和门控网络,前者负责处理特定类型的数据,后者则根据输入数据特点选择最合适的专家。DeepSeek-V3模型拥有6710亿参数,但在推理时仅激活370亿参数,这大大减少了计算成本和显存占用。尽管MoE在训练稳定性和显存压力方面面临挑战,但其在计算效率、模型扩展性和灵活性上的优势使其成为大模型发展的有力候选。随着技

2025-05-14 16:36:27 790

原创 开源长期主义:浅谈DeepSeek技术主张与早期论文

DeepSeek公司通过开源和长期主义的技术愿景,致力于推动大语言模型和多模态模型的发展。其技术路径包括探索扩展法则(Scaling Law)、混合专家架构(MoE)、代码生成与定理证明、以及视觉-语言理解等领域。DeepSeek在早期发布的论文中,提出了非传统扩展法则,开发了DeepSeekLLM和DeepSeekMoE模型,显著提升了模型性能和效率。此外,DeepSeek-Coder和DeepSeek-Prover模型在代码生成和定理证明任务中表现出色,缩小了开源与闭源模型的性能差距。DeepSeek-

2025-05-14 15:46:04 1142

原创 o3时代:数据治理与大小模型的趋势

文章探讨了O3时代人工智能的发展趋势,特别是数据治理与大小模型的结合如何破解AI发展瓶颈。OpenAI的O3模型在多项基准测试中表现出色,展示了其在复杂推理、自我优化和创新解决方案生成方面的能力。文章指出,未来的AI发展将依赖于自上而下的数据治理策略与大、小模型的结合,以实现更高效的数据管理和任务处理。小模型因其轻量化、可控性强和低延迟的优势,在资源受限的环境中展现出强大的适应性和应用潜力。文章还强调了全局数据治理战略的重要性,以及大小模型结合在推动AI向更加智能、可控、可持续目标迈进中的作用。最后,文章提

2025-05-14 15:21:18 860

原创 Clio: Anthropic推出的首个用于了解AI使用情况的隐私优先工具

Anthropic公司推出了名为Clio的隐私优先AI使用分析工具,旨在保护用户隐私的同时,深入了解其AI系统Claude的实际使用情况。Clio通过自动化分析用户与Claude的对话,提取并聚类对话主题,从而揭示使用模式和趋势,而无需暴露敏感信息。该工具采用多层隐私保护措施,确保数据匿名化和汇总处理,仅向分析人员展示聚类信息。Clio的引入不仅帮助Anthropic改进安全措施,还展示了如何在保护隐私的前提下进行AI系统的道德治理。通过Clio,Anthropic能够识别和阻止协同式滥用行为,监测高风险事

2025-05-14 15:12:06 773

原创 AI 芯片浪潮:SoC与ASIC各显神通齐头并进

另一方面,SoC 的 CPU、GPU、NPU 异构计算优势是其灵活性的支撑,例如Intel oneAPI的异构计算开发辅助工具应运而生,它可将CUDA开发环境对Intel Arc集成显卡进行适配,也可对GPU上的开发环境在NPU上进行适配,辅助应用开发者灵活利用异构计算的优势,将应用对CPU、GPU、NPU中的多个计算单元进行适配。等机器学习框架良好适配,对深度学习计算进行高性能、低功耗的优化,软件与硬件相得益彰,并且可根据业务需要对TPU的设计进行调整,以便满足谷歌内部各种特定的 AI 训练和推理需求。

2025-05-14 11:02:27 1015

原创 使用大语言模型从零构建知识图谱(中)

本文详细介绍了如何利用大语言模型(LLM)从零开始构建知识图谱,涵盖了节点定义、关系识别和Cypher查询生成的完整流程。通过自定义流程,作者展示了如何自动生成节点、关系以及Cypher查询,并基于数据集进行操作。文章还探讨了使用Ollama和DeepSeek-V3等工具进行模型初始化的方法,并提供了代码示例和验证步骤,确保生成的节点、关系和查询符合预期。此外,作者强调了跳出固有思维模式的重要性,以设计出更灵活的Graph-Builder。最后,文章提到未来将介绍使用LangChain实现的现代化Graph

2025-05-14 10:59:03 1036

原创 使用大语言模型从零构建知识图谱(上)

这是因为在过去,如果我们想将模型定制化以适应不同的场景(无论是处于娱乐场景还是商业场景),通常有以下三种选择:预训练模型以提供更好的行业适应性,或者针对特定数据集对模型进行微调,又或者是基于给定的上下文让模型进行总结性回复。接下来,让我们看看实际的图谱。另一个免费的方案是使用 Google的大模型服务平台,要获取 api key,请访问这里(假设你已经拥有一个 Google 的账号并且已经登录到管理控制台),然后按照开发平台的引导创建 api key 并将生成的 key 复制并保存起来,后面会用到。

2025-05-14 10:57:25 1156

原创 智能背后的阴影:LLM安全风险

而黑盒攻击,与之相反,攻击者只能通过输入信息,获取输出来和模型进行交互,并不了解模型的底层机制,因此对于一些闭源的LLM如GPT系列也存在一定的威胁。从越狱提示长度方面来看,如图所示,越狱提示的平均token数量为555,是常规提示的平均token数量的1.5倍,并且随着时间推移呈现不断增加的趋势,大致上也随着ChatGPT的不断更新而增加;这些方法具有较高的隐蔽性和破坏性,例如给予提示的后门攻击可以注入有毒的提示来影响LLM的预测,而基于PEFT过程中的后门注入可以控制微调后的模型产生一些有害的行为。

2025-02-12 17:07:24 1784

原创 吴恩达:《State of AI report》展现2024的主要趋势和突破(三)

万字长文,2024AI行业的科研角力©作者|Zhongmei来源|神州问学前言吴恩达的网站在十月中旬发表了一篇名为《A Year of Contending Forces》的文章,该文章是围绕着一个名为《State of AI Report - 2024》的年度报告的总结和点评。该报告由Nathan Benaich和Air Street Capital团队制作,这是该报告的第七年,新报告记录了过去一年推动AI发展的强相互作用力:开源与专有技术、公共与私人融资、创新与谨慎,汇聚了来自于2024年的研究论文、新

2025-02-12 17:06:39 1092

原创 新型LLM优化技术削减内存成本高达75%

Universal Transformer Memroy通过使用神经注意力内存模型(NAMMs),即简单的神经网络,来优化提示,决定是“记住”还是“忘记”LLM内存中存储的每个token。研究人员表示:“即使在这些分布外的设置中,NAMMs通过丢弃诸如冗余视频帧和次优动作等token,保留了其优势,使其新的基础模型能够专注于最相关的信息以提高性能。研究人员表明:“这一新能力使得Transformer能够舍弃无用或冗余的细节,专注于最关键的信息,这对于需要长上下文推理的任务来说是至关重要的。

2025-02-12 17:03:27 759

原创 知识炼金术:让KG与LLM催化智能未来

对于给定的应用问题,我们可以应用知识图谱来进行基于知识的搜索,寻找潜在的目标和未见数据,同时使用LLMs来进行基于数据/文本的推理,看看可以得出哪些新的数据/目标项。做图谱其实就是做数据,其实就是对错综复杂的文档的数据进行有效的加工、处理、整合(数据定义、数据挖掘、数据清洗、数据评估的过程),使其转化为简单、清晰的“实体,关系,实体”的三元组。KG-to-text的生成将知识图谱和文本连接起来,大大改善了KG在更现实的NLG场景中的适用性,包括讲故事和基于知识的对话。将相关的知识子图引入到LLM的输入中。

2025-02-12 17:02:24 1498

原创 稀疏计算的软硬件协同:FPGA有力推动硬件发展

但是稀疏计算方面,GPU的架构通常不能在模型的稀疏性和准确度上保持平衡,相比之下,FPGA (可编程逻辑阵列) 平台因其灵活性能够更好地支持非结构化稀疏、块稀疏等稀疏化模式,并通过改进内存带宽利用和编译效率来克服当前硬件的局限性。FlightLLM 的矩阵计算引擎 MPE 通过硬件/软件协同设计,引入了可配置稀疏 DSP 链(CSD-Chain),利用定制化的 FPGA DSP48 核心,不仅减少了硬件开销,还灵活支持包括 N:M 稀疏模式在内的各种稀疏计算运算,从而克服了低计算效率的挑战。

2025-02-12 16:59:15 1332

原创 “白菜价”的GraphRAG来了,成本降低1000倍!

LazyGraphRAG的最大亮点在于其数据索引阶段的创新。相比传统的广度优先搜索,LazyGraphRAG能够更加高效地找到最佳匹配的文本块,同时考虑整个数据集的广度,极大地提高了查询的效率。尽管GraphRAG在许多场景中表现出色,但在处理全局数据查询时,其成本问题一直受到诟病,尤其是在大规模AI模型中,查询的延迟和准确性也成为了瓶颈。在高预算下,LazyGraphRAG的胜率持续上升,尤其在全局查询上,其表现超越了其他所有方法,显示了LazyGraphRAG在成本和质量方面的强大可扩展性。

2025-02-12 16:44:43 794

原创 如何复刻o1模型的深度思考

当然o1模型本身在处理复杂问题是有更好的能力不单纯是CoT的功劳,o1模型在预训练之初就是在大量的文本数据集上进行的,o1模型具有广泛的世界知识,但是对于实际应用来说他的成本则是比较高昂的,而o1-mini则是在预训练期间针对STEM推理进行了优化,在使用与o1相同的高计算强化学习(RL)进行训练之后o1-mini在许多推理任务上实现了相当的性能,成本效率也有了很大的提升,但是o1-mini在非STEM的事实知识任务上表现较差。而因为草莓模型的推理能力的提升能够准确的回答,所以被称为草莓模型。

2025-02-12 16:43:44 593

原创 ChatGPT macOS 桌面应用让你的编程体验更上一层楼

在这之后不久,微软发布了名为 Omniparser 的项目,这是一款可以解析屏幕的 AI 代理工具 —— 该项目的推出可能预示着未来微软会利用 AI 能力来控制用户桌面的能力,其中最有可能的就是通过集成在 Windows 操作系统中的 Copilot 来实现。提示词:这是一个文档型的 macOS 桌面应用模板,我想利用这个模板开发一个标准功能的文本编辑器,在应用界面的顶部需要有一个功能菜单条,在菜单条中包含典型的功能,比如:文字加粗、斜体、下划线、左对齐、居中对齐、右对齐、有序列表、无序列表等等。

2025-02-12 16:42:55 1609

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除