前言
自从deepseek R1发布之后,deepseek便爆火
爆火以后便应了“人红是非多”那句话,不但遭受各种大规模攻击,即便后来挡住了大部分攻击,但海内外大量闯入deepseek官网一探究竟的网友也把他们的服务器压得不堪重负
导致一提问,要么频繁显示:服务器繁忙,请稍后再试;要么回答了 但无法联网,致使我朋友圈内一些不知情的朋友说:看把媒体给能的,各种瞎吹,但其实不过尔尔…
怎么办呢?
-
一方面,微信上的好友老师木发圈表示
“ 这个春节有点特别,虽然没有休息一天,大家也没有怨言。看到DeepSeek创造的一个又一个奇迹,我很焦急但苦于没有资源,同事突发奇想:国产卡多,用国产卡吧 ”
于是,在25年的2.1日,硅基流动 x 华为云联合推出基于昇腾云的 DeepSeek R1 & V3 推理服务!个人认为这是国产GPU替代英伟达GPU之路的里程碑时刻
虽然在此之前,华为以及不少国内公司在GPU国产化上做了很多工作、努力,而且在不少政务单位已经做了很多替代
但我们过去两年 对外接各种大模型项目的时候——我司「七月在线」除了开发一系列内部产品 也对外接各种项目,不论是客户还是我们内部,对国产GPU是否好适配、以及适配之后是否丝滑好用 始终存在着一定的担忧我相信,这一情况会随着本次的「昇腾云的 DeepSeek R1 & V3 推理服务」而越来越好
-
二方面,我原本不想看什么本地部署的,也不得不关注下各种版本下的本地部署
本文便来重点探讨各种版本下、各种情况下的DeepSeek-R1的本地部署「当然,某乎上也有很多类似“ 如何在本地部署DeepSeek-R1模型?” 的帖子,但有了本文之后,你基本上不用再看别的帖子了」
如此,本文来了,以下是本文的更新记录「本文不用付费、不用各种附加条件,直接看即可,且涵盖各种版本的部署、各种交互模式、各种额外功能比如联网、知识库——齐活」
-
2.3日下午,在我自己的iMac上本地部署了下R1 7B蒸馏版,详见下文的
2.1.1 Ollama下的终端命令行交互
2.1.2 Ollama下的open-webui交互:基于docker安装,且支持联网搜索 -
2.4日晚上,可能是自己早已习惯在博客中尽可能把所有细节一次性讲清楚
所以我自己又尝试了
2.1.3 基于Ollama + ChatBox部署deepseek-r1:7b
2.2.1 基于Ollama + Page Assist搭建本地知识库问答系统:且支持联网搜索且同时让同事文弱尝试了通过vLLM推理deepseek-r1,也已更新在了下文的
2.3 通过vLLM推理deepseek-r1 -
2.5日早上,再度尝试了
2.2.2 基于Ollama + AnythingLLM搭建本地知识库问答
第一部分 本地部署之前的准备工作:各个版本、推理框架、硬件资源
**1.1 DeepSeek-R1的多个版本:**加上2个原装671B的,总计8个参数版本
在huggingface上总共有以下几种参数的deepseek R1
- DeepSeek-R1 671B
- DeepSeek-R1-Zero 671B
- DeepSeek-R1-Distill-Llama-70B
- DeepSeek-R1-Distill-Qwen-32B
- DeepSeek-R1-Distill-Qwen-14B
- DeepSeek-R1-Distill-Llama-8B
- DeepSeek-R1-Distill-Qwen-7B
- DeepSeek-R1-Distill-Qwen-1.5B
1.2 主流的大模型推理框架:分为PC端和Android端
首先,看推理框架,目前主流的大模型推理框架主要有以下5种:
- SGLang
完全支持 BF16 和 FP8 推理模式下的 DeepSeek-V3 模型 - Ollama,相对简单易用,大众用户首选
- vLLM,开发者首选,便于商业化诉求
支持 FP8 和 BF16 模式的 DeekSeek-V3 模型,用于张量并行和管道并行
详见:一文通透vLLM与其核心技术PagedAttention:减少KV Cache碎片、提高GPU显存利用率(推理加速利器) - LLaMA.cpp
- MNN-LLM,偏Android手机端
MNN-LLM展现了卓越的CPU性能,预填充速度相较于llama.cpp提高了8.6倍,相较于fastllm提升了20.5倍,解码速度分别快了2.3倍和8.9倍
更多详情,请参见论文《MNN-LLM: A Generic Inference Engine for Fast Large Language Model Deployment on Mobile Devices》
1.3 不同参数的模型所要求的硬件
其次,看硬件要求,很显然,不同参数的模型所要求的硬件各不相同(下表修改自微信好友杨老师整理的表格)
模型参数 | 最低GPU配置 | 最低CPU配置 | 建议内存 | 建议硬盘空间 |
---|---|---|---|---|
R1 or R1-Zero 满血版 | ||||
A/H100(80G) x 16-18 |
某乎上便有篇文章:16张H100部署模型DeepSeek-R1
值得一提的是,A100/A800原生并不支持FP8运算,如果A800要执行FP8精度计算,需要在指令层面进行模拟(存在精度转换计算)
如下图所示(图源)
| Xeon 8核 | 192GB | 2TB固态 |
| R1-distill-llama70B | RTX 4090(24GB) x 2 | i9-13900K | 64GB | 1TB固态 |
| R1-distill-Qwen32B | RTX 4090(24GB) | i7-13700K | 64GB | 1TB固态 |
| R1-distill-Qwen14B | RTX 4060S(16GB) | Ryzen 7 | 32GB | 500G固态 |
可以看到
-
完全开源的DeepSeek-R1 671B参数进行本地私有化部署的显卡资源要求极高
包括我司七月在线内部之前也最多用过8张80G的A100——通过1.5K条paper-review数据微调LLaMA2 70B「详见此文《七月论文审稿GPT第4.2版:通过15K条paper-review数据微调Llama2 70B(含各种坑)》」 -
由于 FP8 训练是Deepseek 的框架中原生采用的,故DeepSeek-R1/3均(DeepSeek-R1基于DeepSeek-V3-base后训练)均为FP8精度训练「详见此文《一文通透让Meta恐慌的DeepSeek-V3:在MoE、GRPO、MLA基础上提出Multi-Token预测(含FP8训练详解)》」,下图是各个精读的对比(图源)
因此提供的精度就是FP8(e4m3),占单个Byte空间
"quantization_config": {
"activation_scheme": "dynamic"
"fmt": "e4m3",
"quant method": "fp8"
"weight_block_size": [
128,
128
]
}
- 模型分片163个,模型的文件总计约为642G,如果以FP3精度加载到显存,模型参数就需要642GB空间
按PagedAttention论文预估的KV-Cache+和激化值估计至少要占到30%左石 - 在推理场景下,输出大多是长文本,那就更多了,而且具体模型还要实测,或用Nvidia Nisight+分析显存占用。估计常规部署都需要800GB以上,10张A800打底
而大部分消费者或开发者拥有的硬件资源是有限的,故关于网上大多数人所谓部署的R1都是其蒸馏Llama/Qwen后的8B/32B/70B版本,本质是微调后的Llama或Qwen模型
1.4 蒸馏版和满血版的两类部署
最后,咱们下面有两种部署对象
-
一个是部署各种蒸馏版
也不要小看蒸馏版,虽然R1蒸馏llama/qwen的版本效果上不及R1 671B满血版,但还是挺能打的
详见下图,在与GPT-4o 0513、o1 mini、QwQ-32B preview PK的过程中,各个蒸馏版在六个榜单中的五个榜单 都拿到了第一
-
一个是部署R1 or R1-Zero 满血版
第二部分 通过Ollama、vLLM本地部署DeepSeek-R1蒸馏版:支持联网搜索及知识库问答
2.1 基于Ollama和各类插件构建智能对话:终端、open-webui(支持联网)、chatbox
2.1.1 Ollama下的终端命令行交互
首先,671B的R1光模型本身就有688G:
- huggingface.co/deepseek-ai/DeepSeek-R1,没有一定的GPU集群 确实不好弄
- 即便是量化版本,最极端的Q1量化,也要94G:huggingface.co/bartowski/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-IQ1_S
- Q4量化版,则大概360G,如果有5张 A100 80G,则可以试一下
huggingface.co/bartowski/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-IQ4_XS
所以,一般用户比较好跑的还是R1的蒸馏版
- 如果是10G显存
可以跑这个R1蒸馏Qwen 2.5 14b的IQ4_NL版本huggingface.co/bartowski/DeepSeek-R1-Distill-Qwen-14B-GGUF/blob/main/DeepSeek-R1-Distill-Qwen-14B-IQ4_NL.gguf - 如果是16G显存
一方面,可以试试蒸馏的Qwen 2.5 32b的版本,IQ3_M量化,不过,有人实测后,说损失有点严重——相当于Q4以下量化都不太推荐
二方面,我司七月在线的**《DeepSeek项目实战营》**提供的GPU预装了DeepSeek-R1-Distill-Llama-8B:https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B,欢迎大伙体验
ollama目前支持部署多种模型,包括且不限于目前最流行的deepseek R1,也包括之前的llama 3.3等
我下午在我自己的iMac上本地部署了下R1 7B蒸馏版,还想办法支持了联网搜索,这一切确实比之前更平权了,速度可以的,效果的话 毕竟就7B嘛——和671B 满血版还是有很大差距的
我的iMac,配置如下
Retina 4K, 21.5-inch, 2017
- 处理器 3,4 GHz 四核Intel Core i5
- 图形卡 Radeon Pro 560 4 GB
- 内存16 GB 2400 MHZ DDR4
- macOS Ventura 13.6.7
具体怎么操作呢,进入Ollama页面
-
Download Ollama,我个人电脑因为是iMac,故选择macOS版本——180M大小
-
在模型列表页面,下载deepseek R1模型:ollama.com/library/deepseek-r1,然后可以选择比如R1蒸馏qwen2 7B的蒸馏版
-
打开本地的命令提示符「我个人电脑是iMac,故在启动台的搜索框里:输入终端,即可打开」,输入以下命令后,回车键开始下载安装对应参数的模型:```
ollama pull deepseek-r1:7b下载完成后,可以通过ollama list指令查看所有本地模型占用的存储空间``` ollama list
想看具体某一个模型的参数。可以使用ollama show指令:```
ollama show <模型名称>具体如下图所示 
-
然后再运行以下命令,便可以和deepseek R1对话了```
ollama run deepseek-r1:7b比如可以提问它:为何deepseek影响力这么大 
2.1.2 Ollama下的open-webui交互:基于docker安装,且支持联网搜索
当然,如果你希望有更好的交互方式,则可以考虑用ollama的标配前端open-webui
-
首先通过docker的官网下载docker
docker.p2hp.com
我直接用的Google账号注册 -
安装好后在右下角点击Terminal,打开控制台
-
输入以下命令——等待安装完成```
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main然后在docker页面可以看到如下呈现 
-
点击上面的链接:http://localhost:3000/auth,创建相关管理员账号之后
即可开始和R1对话拉
可能有同学疑问,这个7B没法联网,有点弱智啊,好问题
-
巧的是,在管理员面板上:http://localhost:3000/admin/settings,可以打开联网搜索滴,如果有相应搜索引擎的API,则自行设置,否则可以选择免费的duckduckgo
-
然后点击聊天界面的左下角 + 按钮,选择联网搜索
-
则一切大功告成
2.1.3 基于Ollama + ChatBox部署deepseek-r1:7b
除了上面的open-webui之外,当然,也有人说,chatbox 是个很方便的图形界面,比open web-UI 好用
一不做二不休,那我们再试下这个chatbox
-
通过Ollama部署好deepseek-r1:7b之后,再通过chatbox官网下载对应的客户端:chatboxai
-
下载好chatbox之后,进行如下图所示的一系列设置「比如模型的提供方选择OLLAMA.API,且在下拉框处选择本地已经安装的模型deepseek-r1:7b」
-
接下来,便可以提问R1 7B拉
2.2 基于Ollama和Page Assist/AnythingLLM构建本地知识库问答系统
2.2.1 基于Ollama + Page Assist搭建本地知识库问答系统:且支持联网搜索
也有人称,Page Assist 直接提供了一个类似Open WebUI的交互界面来运行本地的大模型,故我们再试下这个Page Assist
更何况在通过Ollama部署好deepseek-r1:7b之后,如果你想让DeepSeek R1不仅仅是一个问答机器人,而是一个具有专有知识的智能助手,那就需要搭建本地知识库了
实现也很简单——基于Page Assist即可
-
直接打开Chrome的插件市场,搜索并添加Page Assist插件
-
安装完插件后,点击插件图标,选择本地搭建的DeepSeek模型,进行配置,且支持联网搜索——背后还是基于免费的duckduckgo
-
且点击页面右上角的设置按钮,还可以进入RAG(RetrievalAugmented Generation)模式
-
上传你自己的知识库
2.2.2 基于Ollama + AnythingLLM搭建本地知识库问答
除了通过page Assist搭建本地知识库外,还可以通过AnythingLLM
-
在其官网下载客户端:https://anythingllm.com/desktop
-
下载好了之后,选择模型
-
一切安装好了之后,点击界面左上角-工作区的上传按钮
即可上传自己的知识库
2.3 通过vLLM推理deepseek-r1
本2.3节基本为我司大模型项目组的文弱编写
2.3.1 基于vLLM的命令行交互——R1-Distill-Llama-8B
-
首先,新建一个conda环境:```
conda create -n vllm_test python=3.10 -
然后配置该conda环境:```
conda activate vllm_testpip install vllm
-
配置好以后,启动vllm推理服务:```
vllm serve path_to/DeepSeek-R1-Distill-Llama-8B --tensor-parallel-size 1 --max-model-len 32768 --enforce-eager --gpu_memory_utilization=0.98 --enable-chunked-prefill --port 6060默认是8000端口,可以修改port里的参数来改变服务端口 vllm serve后面的模型路径改为本地下载好的模型的实际绝对路径
-
启动vllm服务后,便可以直接提问了,比如输入如下命令行:```
curl http://localhost:6060/v1/chat/completions \-H “Content-Type: application/json” \
-d '{
“model”: "path_to/DeepSeek-R1-Distill-Llama-8B ",
“messages”: [
{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "题目:有五个人站成一排,每个人手中都拿着一顶帽子,帽子的颜色可以是红色、蓝色或绿色。每个人都能看到自己前面的人头上的帽子颜色,但看不见自己头上的帽子,且每个人只能看到前面人的帽子颜色,而无法看见自己的帽子和别人背后的帽子。每个人都可以听到别人说话的内容,但不能交换信息。规则:每个人都知道一共有三种颜色的帽子(红、蓝、绿),并且帽子是随机分配的,每种颜色可能有多个,但也可能没有。每个人会依次回答自己头上的帽子颜色,能正确猜出自己帽子颜色的人可以获得奖励。第一个人只能听到后面四个人的回答,无法知道任何自己的信息;第二个人只能听到后面三个人的回答,依此类推。第一个人可以先做一个声明,告知后面的人如何推理他们自己的帽子颜色。问题:如果所有人都能完美推理出自己头上的帽子颜色,问:第一个人应该如何开始,才能确保最多的人能够猜对自己帽子颜色?"}
],
“max_tokens”: 2000,
“temperature”: 0.7,
“top_p”: 0.9
}’
2.3.2 基于vllm + open WebUi 部署r1 7b
同事文弱因为电脑显存有限,所以找了一个量化的7b模型,重在跑通流程「如他所说,open webui需要docker,所以autodl上不能用,但是我的电脑显存又比较小,我去魔搭社区找到了一个8bit的r1 7b弄的,最终在wsl2上启动的vllm服务,在Windows上启动的open webui」
对于wsl2的部分:
-
第一步:下载模型```
git lfs installgit clone https://www.modelscope.cn/okwinds/DeepSeek-R1-Distill-Qwen-7B-Int8-W8A16.git
-
第二步:搭建环境```
conda create -n vllm_deploy python=3.10conda activate vllm_deploy
pip install vllm
-
第三步:用vllm启动推理服务```
vllm serve /home/duke/playground/models/DeepSeek-R1-Distill-Qwen-7B-Int8-W8A16 --max-model-len 32768 --enforce-eager --gpu_memory_utilization=0.9 --enable-chunked-prefill -
第四步:得到wsl2的实际ip地址```
ip addr show eth0 | grep 'inet ’ | awk ‘{print $2}’ | cut -d/ -f1172.18.xxx.xxx
对于Windows部分
-
第一步:下载docker桌面版
在docker官网(www.docker.com)下载Windows的docker桌面版 -
第二步:运行(下载)open Webui docker```
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main -
第三步:在本地浏览器输入 localhost:3000 进入open Webui界面
注册并登录之后
点击左下角的settings:在settings的界面再点击admin settings:
在接下来的页面点击Connections,点击以后在 Manage OpenAI API Connections 这个框中填入「注意,这里只是个设置框,并不需要你事先有OpenAI的API」:
http://172.18.xxx.xxx:8000/v1 (这里的ip地址为wsl2的地址,而不是localhost)
在同事文弱的环境中,必须用http协议,否则会报错。默认是https,这里需要注意一下在第二框中填入一个空格即可
点击右下角的齿轮再连接就可以了 -
第四步:对话验证
新建一个对话框,这个时候就可以找到我们在wsl2中vllm部署的模型了
加载该模型即可开始对话
2.4(选读) 本地手机端部署DeepSeek-R1蒸馏Llama/Qwen后的版本
直接通过这个链接:mnn_llm_app_debug_0_1.apk,下载Android apk,安装之后,在应用内的模型列表最后一个,直接安装R1-1.5B-Qwen-MNN
// 待更
第三部分 无蒸馏前提下本地部署R1 or R1-Zero 671B满血版
本地部署R1 or R1-Zero 满血版又分为两种方式
- 一种是做了各种量化的,此乃属于追求满血版但资源还是有限不得不做的折中处理
- 一种是不做任何量化的,这种属于土豪路径,如果你是用的这个路线,请私我,原因很简单,我也想多一些土豪朋友
3.1 折中路径:无蒸馏但量化部署Deepseek-R1 671B满血版
3.1.1 本地CPU上运行 Deepseek-R1 的完整的硬件 + 软件设置
huggingface 的一工程师Matthew Carrigan展示了在本地CPU上运行 Deepseek-R1 的完整的硬件 + 软件设置「他使用的是 670B 模型,无蒸馏,Q8 量化,实现全质量,总成本 6,000 美元——GPU版本得10万美元+」
核心硬件方面
- 主板:技嘉 MZ73-LM0 或 MZ73-LM1。有 2 个 EPYC 插槽,以获得 24 个 DDR5 RAM 通道
- CPU:2x 任何 AMD EPYC 9004 或 9005 CPU
“LLM 一代的瓶颈在于内存带宽,因此您不需要高端产品。如果真的想降低成本,请购买 9115 甚至 9015” - RAM:24×32GB DDR5-RDIMM
因为需要 768GB(以适应模型)跨 24 个 RAM 通道(以获得足够快的带宽),故意味着 24 x 32GB DDR5-RDIMM 模块
关键组件方面
- 电源:该系统的功耗出奇地低!(<400W)
“但是,您需要大量的 CPU 电源线来为 2 个 EPYC CPU 供电。Corsair HX1000i 的功率足够了。” - 机箱:具有用于安装完整服务器主板的螺丝安装座
- 散热器:适合AMD EPYC 有 SP5 插槽的就行
系统调优方面
- 最后,SSD:任何适合 R1 的 1TB 或更大的 SSD 都可以。“推荐 NVMe,只是因为启动模型时你必须将 700GB 复制到 RAM 中
- 软件部分:安装 Linux,进入 BIOS 并将 NUMA 组数设置为 0。这将确保模型的每一层都交错在所有 RAM 芯片上,从而使我们的吞吐量加倍。安装 Llama。下载 700G 的DeepSeek-R1-Q8_0 版本
软件部署
- 安装llama.cpp:git clone https://github.com/ggerganov/llama.cpp
- 下载模型权重:HuggingFace Q8_0目录全量700GB(⚠️确保存储空间)
- 一切完成后,设置以下代码:```
llama-cli -m ./DeepSeek-R1.Q8_0-00001-of-00015.gguf --temp 0.6 -no-cnv -c 16384 -p “<|User|>How many Rs are there in strawberry? <|Assistant|>”
这个版本没有 GPU,生成速度是每秒 6 到 8 个tokens,作者认为考虑到价格,这个非 GPU 硬件的方案可以接受。因为运行的是 Q8 量化的完整 670B 模型,因此质量应与 Deepseek API 无异
至于为什么不用GPU?
- 显存墙限制:保持Q8精度需700GB+显存,单张H100仅80GB → 需9张组集群 → 成本超10万美元
- 量化损耗困境:若降精度至FP16,8卡H100即可运行 → 但模型质量显著下降 ≈ 智商砍半
- 性价比暴击:本方案以1/20成本实现可用推理速度(对比GPU方案6-8tps vs 50-100tps)
3.1.2 GPU上跑无蒸馏但量化的Deepseek-R1 671B满血版
Unsloth AI 在 HuggingFace 上提供了 “动态量化” 版本来大幅缩减模型的体积
所谓“动态量化” 的核心思路是:对模型的少数关键层进行高质量的 4-6bit 量化,而对大部分相对没那么关键的混合专家层(MoE)进行大刀阔斧的 1-2bit 量化
为什么可以做呢,原因在于他们观察到,DeepSeek 的前 3 层是全连接层,而非 MoE 层
作为回顾,MoE(专家混合)层使得能够在不增加模型计算量(FLOPs)的情况下增加参数数量,因为他们动态地将大多数条目掩码为 0,因此实际上跳过了对这些零值条目的矩阵乘法运算「更多请参阅此条推文:x.com/danielhanchen/status/1868748998783517093」
-
总之,通过这种方法,DeepSeek R1 全量模型可压缩至最小 131GB(1.58-bit 量化),极大降低了本地部署门槛,甚至能在单台 Mac Studio 上运行
-
Unsloth AI 提供了4 种动态量化模型(1.58 至 2.51 比特,文件体积为 131GB 至 212GB)
MoE Bits Disk Size Type Quality Link Down_proj 1.58-bit 131GB IQ1_S Fair huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-UD-IQ1_S 2.06/1.56bit — — — — — — 1.73-bit 158GB IQ1_M Good huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-UD-IQ1_M 2.06bit — — — — — — 2.22-bit 183GB IQ2_XXS Better huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-UD-IQ2_XXS 2.5/2.06bit — — — — — — 2.51-bit 212GB Q2_K_XL Best huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-UD-Q2_K_XL 3.5/2.5bit — — — — — —
部署此类大模型的主要瓶颈是内存+显存容量,建议配置如下:
- DeepSeek-R1-UD-IQ1_M:内存 + 显存 ≥ 200 GB
- DeepSeek-R1-Q4_K_M:内存 + 显存 ≥ 500 GB
若硬件条件有限,可尝试体积更小的 1.58-bit 量化版(131GB),可运行于:
- 单台 Mac Studio
192GB 统一内存,参考案例可见 X 上的 @ggerganov,成本约 5600 美元 - 2×Nvidia H100 80GB
参考案例可见 X 上的 @hokazuya,成本约 4~5 美元 / 小时
且在这些硬件上的运行速度可达到 10+ token / 秒
// 待更
3.2 土豪路径:无蒸馏不量化部署Deepseek-R1 671B满血版
想既不蒸馏、且不量化部署R1满血版,其实过程跟上面差不多,但核心问题是对硬件的要求很高——正因为需要十几张H100,故涉及到对GPU集群的管理
配置项 | 配置要求 |
---|---|
GPU | H100 * 16 |
CPU | 128核 |
内存 | 512GB |
磁盘 | 1TB |
// 待更
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓