基于 Dify + 通义千问的多模态大模型 搭建发票识别 Agent,大模型入门到精通,收藏这篇就足够了!

用Dify+通义千问搭建发票识别Agent及大模型学习资源

在AI浪潮席卷而来的今天,你还在为发票手动录入烦恼吗?本文手把手教你利用Dify平台和阿里通义千问多模态大模型,快速构建一个智能发票识别Agent。零代码基础也能上手,提升工作效率10倍以上!从注册到部署,全流程详解。快来解锁你的AI生产力吧!

image.png

在数字化转型的时代,企业每天处理海量的发票数据,手动录入不仅耗时耗力,还容易出错。想象一下,如果你有一个智能Agent,能自动扫描发票图像,提取关键信息如金额、日期、税号,甚至分类归档,那该多省心啊!

这个方案的核心在于Dify和通义千问的完美结合。Dify是一个开源的AI应用开发平台,它允许开发者通过拖拽式界面快速构建AI应用和Agent,支持集成各种大模型。通义千问(Qwen)则是阿里云推出的强大多模态大模型系列,支持文本、图像、视频等多种输入,能处理复杂的视觉任务,如OCR(光学字符识别)和语义理解。结合两者,我们可以创建一个多模态Agent,专攻发票识别,帮助中小企业或个人用户实现自动化办公。

为什么选择这个组合?首先,Dify门槛低,无需编写复杂代码;其次,通义千问的多模态能力强悍,尤其在中文发票识别上表现优异,能准确处理模糊、倾斜的图像;最后,整个搭建过程成本低廉,只需几小时就能上线。接下来,我将一步步带你从零搭建,确保即使是AI小白也能跟上。整个流程基于最新的 Dify 版本和 qwen-vl-max,准备好了吗?让我们开始吧!

准备工作和账号注册

首先,确保你有基本的环境准备:一台电脑、稳定的网络,以及一个阿里云百炼平台账号(用于通义千问)。

  1. 注册Dify账号
    打开浏览器,访问 Dify官网。使用邮箱或GitHub账号注册。Dify支持云端部署和本地自建,如果你只是测试,云端免费版就够用。注意,免费版有API调用限额,但足以搭建原型。
    本地部署也很简单,将 dify clone 下来使用 docker compose up -d 即可运行。

  2. 获取通义千问API Key
    登录 阿里云百炼控制台,访问模型,点击左下角的密钥管理,然后在API管理页面生成一个API Key。记住,这个Key是连接Dify和通义千问的桥梁。通义千问支持多模态模型如Qwen-VL(视觉语言模型),我们将用它来处理发票图像。

    image.png

创建Dify应用并集成通义千问模型

现在,进入Dify的核心操作。

  1. 新建工作流
    在Dify控制台,点击创建空白应用,选择“工作流”模式创建应用。给它起个名字,比如“发票识别 Agent”,再点击“创建”按钮。

    image.png

  2. 集成大模型
    在开始的下一个节点点击LLM,此时下面的模型会自动选中之前配置的第一个模型,我们需要将其模型切换为 qwen-vl-max 或者其他支持视觉的大模型。

    image.png

  3. 配置Prompt模板
    在LLM的SYSTEM编辑器中,定义核心提示词。提示词是Agent的“大脑”,告诉模型如何处理发票。示例Prompt(直接复制使用):

     你是一个专业的发票识别专家。用户会上传一张发票图像,请分析图像内容,提取以下关键信息:  
     - 发票号码  
     - 开票日期  
     - 总金额(含税小写)
    
     如果图像模糊或信息缺失,请提示用户重新上传。输出格式为JSON,除JSON数据外不返回任何说明信息包括, ```json ```这种也不需要,便于后续处理。  
     未识别到内容时的示例输出:
     {
         "code": -1,
         "msg": "图像模糊或信息缺失"
     }
     正确的示例输出:  
     {
         "code": 200,
         "msg": "成功",
         "data": {
             "invoice_number": "0987654321",
             "date": "2025-08-17",
             "total_amount": "600.00"
         }
     }
    

    这个Prompt利用了通义千问的多模态能力,能直接“看”图像并理解语义。

  4. 添加数据处理脚本
    添加代码执行节点,输入变量选择大模型输出的 text,输出变量为 result ,输出类型为对象,代码内容如下所示:

    import def main text: str dict return "result"
    

    image.png

  5. 添加结束节点
    新增结束节点,输出内容为上一步的 result ,到这一步配置就完成了。

  6. 发布
    测试没问题后,点击右上角的 发布 按钮,生成分享链接或API Endpoint。你可以将其嵌入到微信小程序、网页,或直接用Dify的Chat界面。想高级点?也可以通过调用API的方式将其集成到企业微信或钉钉。

大模型算是目前当之无愧最火的一个方向了,算是新时代的风口!有小伙伴觉得,作为新领域、新方向人才需求必然相当大,与之相应的人才缺乏、人才竞争自然也会更少,那转行去做大模型是不是一个更好的选择呢?是不是更好就业呢?是不是就暂时能抵抗35岁中年危机呢?

答案当然是这样,大模型必然是新风口!

那如何学习大模型 ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。但是具体到个人,只能说是:

最先掌握AI的人,将会比较晚掌握AI的人有竞争优势。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

但现在很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习路线完善出来!

在这里插入图片描述

在这个版本当中:

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型路线+学习教程已经给大家整理并打包分享出来, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全咨料,放心领取)👈

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源

在这里插入图片描述

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码免费领取

👉CSDN大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全资料,放心领取)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值