今天给大家推荐的这本书是大模型领域最受读者喜爱的 LLM 应用开发图书,第 1 版销量 2 万册。读者对这本书的喜爱源于其简单、示例多、图文并茂,知识点全。你可以认为它是一份 LLM 应用开发的 MVP(最小可用知识)。
升级版涵盖了自第 1 版以来 GPT-4 的核心更新、API 应用解析,及 RAG、Agent 等读者最为关注的技术点,中文版还涵盖 DeepSeek 应用开发案例,覆盖 LLM 生态热门平台与框架:OpenAI、LangChain、LlamaIndex、DeepSeek、Dify。篇幅从第 1 版的 160 页到第 2 版的 300 页,新知识满满。如果你想上手 LLM 应用开发,毫无疑问,就从这本书开始。
大模型的进化仍会持续,但核心开发范式不会变
如今,大语言模型已经不再是一个单一的产品,而是一个完整的技术生态。无论是 GPT-4、DeepSeek、Claude,还是未来的 GPT-5 还是 DeepSeek 新版本的发布,它们的核心架构、API 交互方式、提示工程、RAG(检索增强生成)、LangChain 等技术框架,都有很强的共性。
如果你已经掌握了如何调用 GPT-4 API,如何高效设计提示词,如何结合外部知识库增强大模型的能力,如何使用 LangChain 构建复杂的 AI 应用,那么不管未来出现什么新模型,你都可以快速适应,而不是从零开始。
从 2023 年到 2024 年,我们见证了 AI 领域的一次次突破,但有一件事始终没有改变:模型会不断升级,但它们的应用开发逻辑不会被颠覆。真正的技术壁垒,不是会用某个具体模型,而是能将 LLM 技术转化为真正落地的应用。
如何系统学习大模型应用开发?这本书给你答案!
如果你对大模型应用开发感兴趣,却不知道如何入门,那么 Olivier Caelen 和 Marie-Alice Blete 合著的《大模型应用开发极简入门:基于GPT-4和ChatGPT(第2版)》将是你的最佳入门指南。
许多开发者初识大语言模型时,往往只停留在“输入提示词,获取结果”的阶段,但真正的 LLM 开发远不止于此。这本书不仅帮你掌握 API 调用,还通过清晰的图解与代码示例,深入解析 GPT-4 的架构演进,揭示模型如何生成文本、理解上下文的底层机制。理解这些核心原理,才能有效规避幻觉(hallucination)、优化响应质量,甚至为特定业务场景定制模型,从而真正发挥大模型的潜力。
附赠本书思维导图,可以提前概览新版内容:
这本书有什么特色?
任何对 LLM 应用开发感兴趣的读者,都可以来参考这本书来入门。书中提供了一份清晰、全面的“最小可用知识”,带领你快速了解 LLM 的工作原理,并在此基础上使用流行的编程语言 Python 构建 LLM 应用。
- 全面升级,紧跟大模型最新趋势:新增自第 1 版以来 GPT-4 的核心更新、API 应用解析,及 RAG、Agent 等读者最为关注的技术点,让你掌握 LLM 最新核心发展。
- 从理论到实战:作者介绍了 LLM 开发的三大范式:提示工程 + 微调 + RAG,并着重解析 GPT-4 的核心机制。从 API 调用到构建智能应用,确保你学得会、用得上。
- 6大案例,快速上手:本书还提供了 6 个高质量案例,涵盖多个应用场景:
✅ 新闻生成器——让 AI 自动撰写新闻内容
✅ YouTube 视频摘要——快速提炼长视频核心信息
✅ 游戏专家——训练 AI 成为游戏助手
✅ 个人助理——构建专属智能助手
✅ 文档组织——高效管理和检索文本资料
✅ 情感分析——分析用户反馈,挖掘情绪倾向
- 示例丰富,简单易学:书中包含大量可直接运行的 Python 代码示例,并配套 GitHub 开源代码库,所有示例均基于真实业务场景,覆盖开发者最常见的需求,帮助你快速理解并应用到自己的项目中。
- 覆盖 LLM 生态热门平台与框架:OpenAI、LangChain、LlamaIndex、DeepSeek、Dify。
- 随书附赠:要说这本书英文版有啥遗憾,那么可能是不涵盖大家非常关注的 DeepSeek 应用开发案例,现在中文版全世界独家,也弥补了这个遗憾,案例基于大家超级热爱的 Dify,闭源最强 OpenAI + 开源双雄 DeepSeek × Dify,教你一步步教你部署私有化 AI 助手!
作译者权威:学术界与工业界的“双重护航”
作者 Olivier Caelen 不仅是布鲁塞尔大学机器学习课程讲师,更在世界级支付公司Worldline主导 AI 研发,具有“教育+产业”的双重背景,让本书既规避了纯理论书的空洞,又超越了碎片化教程的局限。而 Marie-Alice Blete 在 AI 系统延迟与性能瓶颈领域的深耕,则为书中每一个案例都注入了工业级落地的可靠性。
译者何文斯:知名大模型创业公司 Dify 产品经理、公众号“何文斯”作者,致力于研究大模型中间件技术和AI应用工程化的实际落地。业余时间撰写大模型相关技术的科普文章,期待共同见证通用人工智能的实现。
这本书适合谁来读?
- 希望将 LLM 能力无缝嵌入现有系统的 Python 全栈开发者
- 试图用 AI 改造内容生成、客服、数据分析等场景的创业者
- 渴望从“调参工程师”进阶为“AI应用架构师”的开发者
其实,只要你对 LLM 应用开发感兴趣,就可以阅读这本书,真的超级简单,原先说得会 Python 才能学习这本书,现在 LLM 也可以同时教你 Python 了。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓