基于Cherry Studio + DeepSeek 搭建本地私有知识库!

在当今数字化时代,知识管理变得越来越重要。无论是个人还是企业,都希望能够高效地存储、管理和检索知识。而借助 AI 技术,我们可以实现更加智能的知识库系统。本文将详细介绍如何使用 Cherry Studio 和 DeepSeek 搭建本地私有知识库,让你的知识管理更加高效和安全。

一、为什么选择 Cherry Studio + DeepSeek

(一)Cherry Studio 的优势

Cherry Studio 是一款集多模型对话、知识库管理、AI 绘画、翻译等功能于一体的全能 AI 助手平台。它具有以下优势:

  • 高度自定义:支持多种文件格式和数据源,用户可以根据自己的需求进行个性化设置。
  • 强大的扩展能力:支持超过 300 个大语言模型,并且能够灵活切换云端和本地模型。
  • 友好的用户体验:界面简洁友好,操作直观,适合初学者快速上手。
  • 数据安全:数据存储在本地,确保数据隐私和安全。

(二)DeepSeek 的优势

DeepSeek 是一系列由深度求索公司开发的大规模语言模型,具有以下特点:

  • 高效的计算架构:采用混合专家(MoE)架构和多头潜在注意力(MLA)机制,显著提升了模型的计算效率和推理能力。
  • 多模态支持:支持文本、图像、音频等多种数据形式,适用于多种应用场景。
  • 强大的推理能力:在数学、代码、自然语言处理等任务上表现出色。

二、搭建本地私有知识库的步骤

(一)安装 Cherry Studio

  1. 下载安装包:访问 Cherry Studio 官方网站,选择适合你操作系统的版本进行下载。
  2. 安装软件:下载完成后,双击安装包,按照安装向导的提示完成安装。

(二)部署 DeepSeek 模型

  1. 安装 Ollama:Ollama 是一个开源的本地化工具,可以帮助我们轻松部署 DeepSeek 模型。访问 Ollama 官网,下载并安装 Ollama。
  2. 部署推理模型:在终端中输入命令 ollama run deepseek-r1:8b,根据自己的硬件配置选择合适的模型版本。
  3. 部署嵌入模型:嵌入模型用于将文本转换为高维向量,便于检索和相似度计算。在终端中输入命令 ollama pull bge-m3,下载并安装嵌入模型。

(三)配置 Cherry Studio

  1. 添加模型:打开 Cherry Studio,点击左下角的“设置”按钮,进入模型服务配置页面。选择“Ollama”作为模型服务类型,点击“管理”按钮,添加刚刚部署的 DeepSeek 模型和嵌入模型。
  2. 配置 API 密钥:如果你使用的是硅基流动提供的 DeepSeek 模型,需要注册硅基流动账号,获取 API 密钥。在 Cherry Studio 的设置页面中,输入 API 地址和 API 密钥。

(四)创建知识库

  1. 新建知识库:点击 Cherry Studio 左侧的“知识库”图标,进入知识库管理页面。点击“添加”按钮,新建一个知识库,输入知识库的名称,并选择嵌入模型。
  2. 添加数据:你可以通过多种方式添加数据到知识库中,包括上传本地文件、添加文件夹目录、输入网址链接、添加站点地图或输入纯文本笔记。Cherry Studio 会自动对添加的数据进行向量化处理。
  3. 搜索知识库:在知识库管理页面,点击“搜索知识库”按钮,输入关键词进行搜索,查看搜索结果及其匹配分数。

(五)使用知识库进行对话

  1. 选择知识库:在 Cherry Studio 的聊天窗口中,选择你刚刚创建的知识库。
  2. 提问:输入问题,DeepSeek 模型会基于知识库中的内容生成智能回答。你可以通过这种方式获取更加准确和相关的信息。

三、总结

通过上述步骤,我们成功地使用 Cherry Studio 和 DeepSeek 搭建了一个本地私有知识库。这个知识库不仅可以存储和管理你的知识,还能通过 AI 技术实现智能搜索和内容生成。它具有以下优点:

  • 数据安全:所有数据存储在本地,无需担心隐私泄露。
  • 高效管理:支持多种文件格式和数据源,方便你快速添加和管理知识。
  • 智能检索:结合 DeepSeek 的强大推理能力,能够提供更加准确和相关的信息。

希望本文能帮助你更好地管理和利用你的知识资源。如果你在搭建过程中遇到任何问题,可以参考 Cherry Studio 和 DeepSeek 的官方文档,或者在相关社区寻求帮助。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值