基于协同过滤算法的美食推荐系统 计算机毕设选题推荐 计算机毕设定制 毕设带做 适合作为毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

🚀🚀新河代码客
🚀🚀个人介绍:专业于Java、Python等编程语言,精通大数据分析、小程序开发、安卓应用设计、深度学习研究、网络爬虫技术、网站建设、Golang编程以及大屏展示项目。
🚀🚀提供开发、定制、代做、设计和文档指导服务,助您轻松解决技术难题!
🚀🚀有任何技术问题或需求,欢迎在评论区交流。感谢大家的点赞、收藏和关注!
🚀🚀更多交流,欢迎访问博主的主页个人空间。
Java实战 | SpringBoot/SSM
Python实战项目 | Django
微信小程序/安卓实战项目
大数据实战项目

⚡⚡文末获取源码

美食推荐系统-研究背景

随着互联网技术的飞速发展和人们生活水平的提高,餐饮行业迎来了前所未有的发展机遇。各类美食平台层出不穷,为消费者提供了海量的餐饮选择。然而,面对如此庞大的信息量,消费者往往感到无所适从,难以高效地找到符合自身口味和需求的餐厅。传统的搜索和筛选方式,如基于关键词或评分的搜索,虽然在一定程度上能够帮助用户缩小选择范围,但仍存在较大局限性,无法满足用户日益增长的个性化需求。因此,如何利用先进的技术手段,为用户提供更加精准、个性化的美食推荐,成为当前亟待解决的问题。 现有的美食推荐方案主要存在以下问题:一是数据稀疏性问题,由于用户对餐厅的历史评价数据有限,导致难以准确捕捉用户的真实喜好;二是冷启动问题,对于新用户或新餐厅,由于缺乏历史数据,推荐系统难以提供有效的推荐;三是可解释性问题,许多推荐算法如同“黑箱”,用户难以理解推荐结果背后的逻辑,从而影响用户体验。为了解决上述问题,本课题旨在研究并设计一种基于协同过滤算法的美食推荐系统,该系统能够通过分析用户的历史行为数据,挖掘用户之间的相似性,从而实现更加精准、个性化的美食推荐。 本课题的研究具有重要的理论意义和实际意义。在理论方面,本课题将深入研究协同过滤算法在美食推荐领域的应用,探索解决数据稀疏性、冷启动和可解释性等问题的有效方法,丰富推荐系统领域的理论研究。在实际应用方面,本课题的研究成果将有助于提升美食推荐的准确性和个性化程度,帮助用户更高效地发现心仪的餐厅,提升用户体验;同时,也能够帮助餐厅更精准地触达目标用户,提高运营效率,促进餐饮行业的健康发展

美食推荐系统-技术

开发语言:Java或Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

美食推荐系统-视频展示

基于协同过滤算法的美食推荐系统 计算机毕设选题推荐 计算机毕设定制 毕设带做 适合作为毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

美食推荐系统-图片展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

美食推荐系统-代码展示

1. 用户相似度计算
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
# 假设有一个用户-餐厅评分矩阵
user_restaurant_matrix = pd.DataFrame({
    'user1': [5, 3, 0, 1],
    'user2': [4, 0, 0, 1],
    'user3': [1, 1, 0, 5],
    'user4': [1, 0, 0, 4],
    'user5': [0, 1, 5, 4],
})
# 计算用户之间的余弦相似度
user_similarity = cosine_similarity(user_restaurant_matrix.T)
user_similarity_df = pd.DataFrame(user_similarity, index=user_restaurant_matrix.columns, columns=user_restaurant_matrix.columns)
print(user_similarity_df)
2. 基于用户的协同过滤推荐
def recommend_restaurants(user_id, user_similarity_df, user_restaurant_matrix, num_recommendations=5):
    # 获取与目标用户最相似的用户
    similar_users = user_similarity_df[user_id].sort_values(ascending=False).index[1:num_recommendations+1]
    # 获取这些相似用户评分过的餐厅
    recommended_restaurants = user_restaurant_matrix.loc[:, similar_users].sum(axis=1).sort_values(ascending=False).index
    # 过滤掉目标用户已经评分过的餐厅
    already_rated = user_restaurant_matrix.loc[:, user_id].dropna().index
    recommended_restaurants = [restaurant for restaurant in recommended_restaurants if restaurant not in already_rated]
    return recommended_restaurants[:num_recommendations]
# 示例:为'user1'推荐餐厅
recommended_restaurants_for_user1 = recommend_restaurants('user1', user_similarity_df, user_restaurant_matrix)
print(recommended_restaurants_for_user1)
3. 基于物品的协同过滤推荐
# 计算餐厅之间的余弦相似度
restaurant_similarity = cosine_similarity(user_restaurant_matrix)
restaurant_similarity_df = pd.DataFrame(restaurant_similarity, index=user_restaurant_matrix.index, columns=user_restaurant_matrix.index)
def recommend_restaurants_based_on_item(user_id, restaurant_similarity_df, user_restaurant_matrix, num_recommendations=5):
    # 获取目标用户评分过的餐厅
    rated_restaurants = user_restaurant_matrix.loc[:, user_id].dropna().index
    # 计算这些餐厅的相似餐厅
    similar_restaurants = restaurant_similarity_df.loc[rated_restaurants].sum().sort_values(ascending=False).index
    # 过滤掉已经评分过的餐厅
    recommended_restaurants = [restaurant for restaurant in similar_restaurants if restaurant not in rated_restaurants]
    return recommended_restaurants[:num_recommendations]
# 示例:为'user1'基于物品推荐餐厅
recommended_restaurants_for_user1_based_on_item = recommend_restaurants_based_on_item('user1', restaurant_similarity_df, user_restaurant_matrix)
print(recommended_restaurants_for_user1_based_on_item)

美食推荐系统-结语

感谢各位同学的耐心阅读!希望本系统能够为你的美食探索之旅提供一些帮助。如果你对本系统感兴趣,或者有任何建议和想法,欢迎在评论区留言交流。你的每一个点赞、投币和收藏都是对我们莫大的鼓励,期待与你一起探索更多美味!一键三连,让更多的小伙伴加入我们的美食发现之旅吧!

🌟🌟新河代码客
Java实战 | SpringBoot/SSM
Python实战项目 | Django
微信小程序/安卓实战项目
大数据实战项目
🌟🌟博主热衷于Java、Python、大数据、小程序、安卓、深度学习、爬虫、网站、Golang、大屏等实战项目。
🌟🌟提供专业开发、定制、代做、设计和文档指导服务,助您轻松解决技术难题!
🌟🌟有任何宝贵意见、技术问题或需求,欢迎在评论区交流。感谢大家的点赞、收藏和关注!
🌟🌟更多交流,欢迎访问博主的主页个人空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值