【算法学习】最小公倍数问题

前言: 

求最小公倍数的两种算法:

求两个正整数的最小公倍数,比如3和5的最小公倍数是15,6和8的最小公倍数是24。

本片讨论如何求两个数的最小公倍数,第一种方法是通过最大公约数来求,第二种方法是累加法。

由最大公约数求最小公倍数

对于两个正整数a,b,这两个数的乘积等于这两个数的最小公倍数与最大公约数的乘积。

所以可以用该公式求最小公倍数。

计算两个正整数的最小公倍数(LCM),可以通过最大公约数(GCD)和公式LCM(a,b)=(a*b)/GCD(a,b)实现。即LCM(a,b)=(a*b)/GCD(a,b)。所以只需求出最大公约数即可。

求最大公约数有两种算法:

1,辗转相除法(欧几里得算法)

其基本步骤如下:

  • 用较大数除较小数,得到余数
  • 用余数继续除上一次的除数,直到除数为0
  • 最后的除数就是最大公约数


例如求91 和 49的最大公约数:

91/49=1......42

49/42=1......7

42/7=6......0

可以得到最大公约数为7。以除数和余数反复做除法运算,当余数为0时,取当前除数为最大公约数


代码实现:

自定义实现GCD函数

计算最大公约数
//int gcd(int a, int b)
//{
//	while (b != 0)
//	{
//		int tmp = b;
//		b = a % b;
//		a = tmp;
//	}
//	return a;
//}
int gcd(int a, int b)
{
	if (a % b == 0)
		return b;
	else
		return gcd(b, a % b);
}
//计算最小公倍数
long long lcm(int a, int b)
{
    if(a==0||b==0)  return 0;
	return (a * b) / gcd(a, b);
}

 使用C++17标准库中的std::gcd。

需包含头文件<numeric>,并使用C++17或更高标准编译。

#include <iostream>
#include <numeric>
using namespace std;

long long lcm(int a, int b)
{
	return (a * b) / std::gcd(a, b);
}
int main()
{
	int a = 12, b = 18;
	cout << lcm(a, b) << endl;
	return 0;
}

总结: 

  1. 公式推导
    利用数学关系:LCM(a, b) × GCD(a, b) = |a × b|

  2. 处理零的情况
    如果任一数为零,直接返回 0(因为零和任何数的 LCM 是零)。

  3. 防止整数溢出
    将 a * b 转换为 long long 类型,避免乘法溢出(例如 a = 1e9b = 1e9)。

  4. 处理负数
    使用 std::abs 保证计算的数值为正,避免符号干扰。

2,辗转相减法

若a>b,则a=a-b(大的数减去小的数)

若a=b,则a或b就是最大公约数


如求35和14的两个最小公倍数:

35-14=21;

21-14=7;此时7小于14,要做一次交换

14-7=7;

7-7=0;此时可以求出最大公约数位7


//a-b辗转相减法
int gcd(int a, int b)
{
	if (a < b)
	{
		//交换
		int c = a;
		a = b;
		b = c;
	}
	if (a == b)
		return a;
	else
	{
		return gcd(b, a - b);
	}
}
long long lcm(int a, int b)
{
	if (a == 0 || b == 0) return 0;
	return (a * b) / gcd(a, b);
}

累加法

又称穷举法。设正数a。最后的最小公倍数一定是a,b的倍数。所以任选a,b一个作为循环变量,假设是a,若变量值除以b可以除尽,则此时的变量就是最小公倍数,否则变量依次+a。

long long lcm(int a, int b)
{
	int i = 0;
	for (int i = a;; i += a)
		if (i % b == 0)
			return i;
}

多个数的最小公倍数(扩展)

对于多个数的LCM,可以使用递归解决。

#include <iostream>
#include <vector>
using namespace std;
//辗转相除法
int gcd(int a, int b)
{
	if (a % b == 0)
		return b;
	else
		return gcd(b, a % b);
}
//计算最小公倍数
long long lcm(int a, int b)
{
	return (a * b) / gcd(a, b);
}
long long lcm_mutiple(vector<int> num)
{
	if (num.size() == 0) return 0;
	long  long result = 1;
	for (int x : num)
		result = lcm(result, x);
	return result;
}
int main()
{
	cout << lcm_mutiple({ 2,5,9 }) << endl;
	return 0;
}

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值