1.树的概念及结构
1.1 树的概念
树是一种非线性的数据结构,它并不像顺序表和链表在逻辑上是连续的,它是由n(n>=0)个有限的结点组成一个具有层次关系的集合,为什么把它叫做树,是因为它看起来就像是倒挂的树,叶子在上面,根在下面.(说它像树,其实它更像一个倒过来的灌木,不用太去纠结这个)
树的最上面的A节点被称之为树的根,最下面的 J , K , L , I 节点被称为树的叶子。
任何一个树都包含 : [根 + N颗子树(N > 0)] , 由此我们不难判断出,树是递归定义的。
1.2 树的相关概念
结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6
叶结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等结点为叶结点
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等结点为分支结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6
结点的层次:从根开始定义起, 根为第1层(也可以从第0层开始),根的子结点为第2层,以此类推;
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林
注意:树形结构中,子树之间(子节点之间)不能有交集,否则就不是树形结构
另外,关于树的结点的层次的定义方面,比较推荐从第一层开始,为什么呢?这是因为,树可能会有空树或者只有一个根结点这种情况,这时候如果从第0层开始,根结点是第0层,那空树就在-1层,这样就会显的有点奇怪,所以更推荐第1层开始,那么空树就是第0层,如下图:
讲完树的相关概念后,我们继续看树的表示方式
1.3 树的表示
树怎么去定义呢?要定义多少个指针呢?这里就很麻烦了,那这里怎么解决呢?这里讲一下两种定义方式(不只有这两种解决方式)
第一种 : 明确树的度
但这个方法有一个问题,当N很大时,如果这样去定义,就会造成空间浪费。
第二种 :左孩子右兄弟表示法
让第一个指针指向左边的子节点,然后用第一个指针找到第二个指针,也就是右边的兄弟节点,如下图:
这样就能解决空间浪费过大的问题。
树这个数据结构一般应用在C盘,D盘,网盘方面,在C盘中,C就是它的根,而其他文件就是它的子孙,这里不过多讲解,初步了解就好。
2.二叉树的概念及结构
2.1 概念
在实践中,树并不常用,意义不是很大,原因是存储麻烦,不如去使用链表,在我们日常中用的最多的就是二叉树,什么是二叉树?
一颗二叉树是节点的一个有限集合,该集合:
1.或者为空
2.有一个根节点加上两个子节点组成,子节点最多为两个,所以叫做二叉树,如下图:
二叉树不存在度大于两个的结点,并且,二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
2.2 二叉树的定义
说好概念后,接下来就是定义,那二叉树需不需要像树一样使用左孩子右兄弟表示法呢?
答案是不需要,树之所以用左孩子右兄弟表示法来定义是因为它一个根或者父节点有多个子节点,并且子节点的数量并不固定,而二叉树的根或者父节点只有固定的两个节点,所以并不需要。
二叉树定义的两种方式:
以上就是关于树和二叉树的基本概念,我们下篇见!!!