- 博客(165)
- 收藏
- 关注
原创 数据库学习笔记(十八)--事务
本文介绍了MySQL数据库事务的基本概念和使用方法。主要内容包括: 事务概述:事务是一组逻辑操作单元,遵循"要么全部提交,要么全部回滚"的原则,确保数据一致性。例如转账操作必须完整执行。 事务的ACID特性: 原子性:事务是不可分割的工作单位 一致性:事务前后数据处于合法状态 隔离性:并发事务互不干扰 持久性:提交后数据永久改变 事务状态:活动、部分提交、失败、中止和提交五种状态。 事务使用方式: 显式事务:通过BEGIN/START TRANSACTION开始,COMMIT提交或ROL
2026-01-04 10:59:25
524
原创 【NLP入门系列六】Word2Vec模型简介,与以《人民的名义》小说原文实践
Word2Vec模型实践:《人民的名义》文本分析 本文介绍了Word2Vec词嵌入模型的基本原理和应用实践。Word2Vec通过将词语映射到向量空间,使相似词距离更近,包含CBOW(上下文预测当前词)和Skip-gram(当前词预测上下文)两种架构。作者以《人民的名义》小说原文为素材,进行了中文文本处理实践。 实践步骤包括: 使用jieba分词并加载自定义人名词典 去除常见停用词 训练Word2Vec模型(skip-gram架构) 应用模型计算词汇相似度、寻找相关词、识别不匹配词等 结果显示:"沙
2025-07-10 23:21:31
1095
原创 数据库学习笔记(十七)--触发器的使用
本文介绍了MySQL触发器的基本概念和使用方法。触发器是一种在特定事件发生时自动执行的操作,可以确保数据完整性并简化应用程序逻辑。主要内容包括: 触发器概述:触发器由INSERT、UPDATE、DELETE等事件触发,嵌入MySQL服务器执行 创建语法:详细说明了触发器创建的语法结构,包括触发时机、事件类型等 OLD和NEW关键字:解释了在不同触发器中如何访问修改前后的数据 触发器管理:介绍了查看和删除触发器的方法 优缺点分析:触发器能确保数据完整性但可读性差,且可能因数据变更出错 文章通过多个示例演示了触
2025-07-05 23:12:59
1018
原创 【NLP入门系列五】中文文本分类案例
本文介绍了中文文本分类的入门案例,主要包含以下内容: 数据准备:读取CSV格式的文本数据,包含内容和标签两列,共12个类别。 标签编码:使用LabelEncoder将文本标签转换为数字编码,方便模型处理。 数据加载:构建自定义Dataset类,将文本和标签加载为可迭代的数据集。 词典构建:使用jieba进行中文分词,构建词汇表并设置特殊标记。 文本向量化:将分词后的文本转换为词汇索引的向量形式。 该案例展示了NLP文本分类的基本流程,重点解决了中文文本处理中的分词和向量化问题。代码提供了完整的数据预处理步骤
2025-07-04 00:42:44
1201
原创 【NLP入门系列四】评论文本分类入门案例
本文介绍了使用PyTorch进行NLP文本分类任务的基础流程,以AG News新闻数据集为例。主要内容包括:1) 数据集介绍:AG News包含4类新闻主题(世界、体育、商业、科技),共12万训练样本和7600测试样本;2) 数据预处理:合并标题和描述字段,检查数据格式;3) 环境准备:检查CUDA设备,加载数据集并构建文本处理管道。文章为365天深度学习训练营的学习记录,适合NLP入门者了解文本分类任务的基本实现方法。
2025-07-03 23:11:57
744
原创 【NLP入门系列三】NLP文本嵌入(以Embedding和EmbeddingBag为例)
本文介绍了NLP中的文本嵌入技术,主要讲解了Embedding和EmbeddingBag两种PyTorch工具。文章通过生动的图示展示了词嵌入的基本原理,说明如何将离散词汇映射到连续向量空间以体现语义关系。作者详细演示了如何使用Embedding层进行文本处理,包括自定义数据集构建、填充函数实现以及简单的二分类模型搭建。核心内容涉及: 词嵌入的基本概念和数学表示 Embedding层的输入输出维度转换 PyTorch实现Embedding的实际应用示例 文本预处理中的填充对齐操作 一个完整的二分类模型构建过
2025-06-20 14:59:12
534
原创 数据库学习笔记(十六)--控制流程与游标
MySQL流程控制摘要 本文主要介绍了MySQL存储程序中的流程控制语句,包括分支结构和循环结构的使用方法。 分支结构 IF语句:根据条件表达式执行不同操作 基本语法:IF-THEN-[ELSEIF]-[ELSE]-END IF 适用于BEGIN END语句块中 提供了薪资调整等实际案例 CASE语句:两种形式 形式1:CASE-表达式 WHEN-值 THEN-操作(类似switch) 形式2:CASE WHEN-条件 THEN-操作(类似多重if) 包含部门薪资调整和薪资等级判断等示例 循环结构 LOOP
2025-06-14 23:12:33
1298
原创 【NLP入门系列二】NLP分词和字典构建
本文介绍了自然语言处理中中文分词的基础概念与方法,主要内容包括: 分词的定义与重要性:解释了词作为最小语义单位的特点,以及分词在文本检索、语音转换等场景中的实际应用价值。 分词规范与难点:介绍了国家标准GB13715的分词规范,重点分析了交集型和覆盖型两类切分歧义案例。 消歧方法:提出利用词法、句法、语义和语用四个层面的上下文信息来解决切分歧义问题。 主要分词算法:对比了正向最大匹配、逆向最大匹配和双向匹配三种经典方法。 字典构建实践:通过Python代码演示了jieba分词器的使用、停用词处理和标点清除等
2025-06-13 18:47:00
1129
原创 数据库学习笔记(十五)--变量与定义条件与处理程序
MySQL变量与定义条件与处理程序 本文介绍了MySQL中变量的分类与使用方法,主要包括: 系统变量 全局变量(GLOBAL)和会话变量(SESSION),默认会话级别 查看方法:SHOW VARIABLES、SELECT @@变量名 修改方法:SET GLOBAL/SESSION 变量名=值 MySQL 8.0新增SET PERSIST实现变量持久化 用户变量 会话用户变量(以@开头,当前会话有效) 赋值:SET @变量=值 或 SELECT INTO 局部变量(存储过程/函数中使用,DECLARE定义)
2025-06-10 23:00:23
1311
原创 【GAN网络入门系列】二,DCGAN人脸图片生成与转置卷积讲解
本文介绍了深度卷积对抗网络(DCGAN)的基本原理及其在人脸图片生成中的应用。DCGAN结合了卷积神经网络(CNN)和生成对抗网络(GAN)的思想,通过生成器和判别器的对抗训练生成逼真的图像。与传统的GAN不同,DCGAN使用转置卷积进行上采样,并在生成器和判别器中引入批量归一化(BN)层和不同的激活函数(如ReLU、Tanh和LeakyReLU)。文章详细解释了DCGAN的模型结构、训练过程以及转置卷积的概念,并通过矩阵运算展示了转置卷积的实现。最后,文章提供了一个基于PyTorch的DCGAN实现示例,
2025-05-23 13:13:52
1267
原创 【GAN网络入门系列】一,手写字MINST图片生成
本文介绍了生成对抗网络(GAN)的基本理论及其在生成手写数字(MNIST)中的应用。GAN由生成器和判别器两部分组成,生成器通过随机噪声生成伪造样本,判别器则负责区分真实样本与伪造样本。两者通过博弈过程不断优化,最终生成器能够生成与真实样本相似的伪造样本。文章详细解释了生成器和判别器的工作原理,并通过代码示例展示了如何搭建和训练一个简单的GAN模型来生成MNIST手写数字。代码部分包括数据准备、模型定义、训练过程及结果保存。通过本文,读者可以初步了解GAN的基本概念及其实现方法。
2025-05-17 00:00:06
991
原创 yolov5基础--yolov5源码阅读(common.py)
本文是《365天深度学习训练营》中的学习记录博客,主要讲解了YOLOv5网络结构中的common.py文件,该文件实现了YOLO算法的各个模块。文章首先介绍了common.py的作用,即定义和实现YOLO网络中的各个模块,如C3模块等。接着,文章详细解析了common.py中的基本组件,包括autopad、Conv和Focus模块。autopad用于自动计算卷积的padding值,Conv模块由卷积层、BN层和SiLU激活函数组成,是网络中最基础的组件。Focus模块则通过切片和卷积操作,将图像的宽高信息聚
2025-05-09 19:00:43
1075
原创 深度学习基础--目标检测常见算法简介(R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN、SSD、YOLO)
本文介绍了常见的目标检测算法,主要分为两阶段(Two-Stage)和单阶段(One-Stage)两大类。两阶段算法包括R-CNN、Fast R-CNN、Faster R-CNN和Mask R-CNN,其核心思想是通过区域建议网络(RPN)生成候选区域,再进行分类和边界框回归。R-CNN是最早的模型,但计算量大;Fast R-CNN通过共享卷积特征提高了效率;Faster R-CNN引入RPN进一步优化;Mask R-CNN则在Faster R-CNN基础上增加了像素级分割功能。单阶段算法包括SSD和YOLO
2025-05-09 17:58:55
1376
原创 数据库学习笔记(十四)--存储函数
前言:前面学习了很多函数,使用这些函数可以对数据进行的各种处理操作,极大地提高用户对数据库的管理 效率。MySQL支持自定义函数,定义好之后,调用方式与调用MySQL预定义的系统函数一样。学过的函数:LENGTH、SUBSTR、CONCAT等语法格式:说明:1、参数列表:指定参数为IN、OUT或INOUT只对PROCEDURE是合法的,FUNCTION中总是默认为IN参2数。2、RETURNS type 语句表示函数返回数据的类型;3、characteristic 创建函数时指定的对函数的约束。取值与创
2025-05-04 22:33:31
1154
原创 yolo基础--yolov5网络结构的讲解与“yolov5s.yaml”文件的修改初步探索
common.py文件讲述的是yolo网络具体实现 🙏 🙏 🙏。:探索AI算法,C++,go语言的世界;在迷茫中寻找光芒🌸。:努力学习的22级本科生一枚 🌟。往期–>yolov5网络结构讲解。从这个可以看出修改后的网络结构。本文任务就是修改4和6模块。都减少了不少参数量。
2025-05-02 10:14:13
413
原创 深度学习基础--目标检测入门简介
📚 一句话,找出图像中感兴趣的物体,确定其位置和类别。由于物体类别不同,其形状、外观、姿态都不同,而且还受环境的影响,故在cv领域,目标检测一直都是一个很热门的话题。🐶 目标检测任务:找出每个物体,类别标注出来,还需要找出具体的位置,位置通常用边缘框表示。边缘框概念用一个边框框主一个物体,如图:这个图要注意一下:坐标系和普通不太一样,主要是坐标。所以,如果物体很多,那需要的成本也是需要很高的。目标检测数据集每一行表示一个物体图片文件名,物体类别,边缘框。
2025-05-01 22:02:37
1645
1
原创 数据库学习笔记(十三)---存储过程
存储过程(Stroed Procedure),它的思想很简单,他就是一组经过预先编译的SQL语句的封装,类似以函数,但是他是封装在服务器上的。需要执行的时候,客户端只需要向服务器发出调用存储过程的命令,服务器就可以把预先存储好的这一系列SQL语句全部执行。简化操作,提高了SQL语句的重用性,减少了开发程序员的压力减少操作过程中的失误,提高效率减少网络传输量(客户端不需要把所有的SQL语句通过网络发送给服务器)减少了SQL语句暴露在网上的风险,也提高了数据查询的安全性。
2025-04-28 23:07:09
1374
原创 MYSQL学习笔记(十二)--视图简介与应用
视图一方面可以帮我们使用表的一部分而不是整个表,另一方面也可以针对不同的用户顶置不同的查询视图。比如,针对公司的销售人员,我们只想给他看部分数据,而某些特殊的数据,比如采购价格,则不会提供给他。再比如,员工薪资是个敏感字段,那么只给某个级别以上的人员开放,其他人的查询视图中则不提供这个字段。
2025-04-18 20:03:28
890
原创 深度学习基础--CNN经典网络之InceptionV3详解与复现(pytorch)
是谷歌在2015年提出,是的进阶版,对于Inception系列网络来说,他是当时第一个在100层卷积网络却依然可以取得好效果的网络(ResNet还没有提出来),相比于更深入得网络结构,在中,包含了48层卷积网络,这可以提取出更多特征,从而获得更好成果;使用分解卷积,将较大的卷积核分解为多个较小的卷积核,在保持良好性能的情况下,依然降低了网络参数量,减少计算复杂度;使用BN层,
2025-04-18 19:54:30
2607
原创 深度学习基础--CNN经典网络之InceptionV1研究与复现(pytorch)
Network-in-Network(NiN)是一种深度学习架构,它在2013年由Lin等人提出,旨在提高传统卷积神经网络(CNNs)的性能。卷积核来降维,这样虽然加大了网络深度,但是也减少了参数量和计算量,网络结构如上图b所示。去掉两个辅助分支,只复现主要分支(详细请看网络结构),并进行实验,对猴痘病图片进行分类。黄色是头部,主要用于数据处理的,绿色是上面介绍的Inception Module结构。中,基本由1*1卷积,3*3卷积,5*5卷积,3*3最大池化这四个基本单元组成,对。假设:前一层的输出为。
2025-04-11 17:40:48
1202
原创 深度学习基础--CNN经典网络之分组卷积与ResNext网络实验探究(pytorch复现)
分组卷积最早出现在AlexNet网络中,在这里将通道数分成两组,采用两个GPU并行提取特征,网络结构如下:提取到的特征图如下:作者发现第一组提取的主要是黑白特征,第二组提取的主要是彩色特征,这样分组特征可以更好的提取不同特征数据。普通卷积 VS 分组卷积先看常规卷积c * k * k如下图左边所示分组卷积,就是对输入的feature map进行分组,然后每组分别卷积。假设输入feature map的尺寸为c * h * w。
2025-04-04 16:26:01
1158
原创 深度学习基础--CNN经典网络之基于SE的ResNet50V2网络结构探究实验
随意线索,不随意线索不随意线索:不随着自己的意思,就像上图左边所示,注意力集中在红色杯子;不随意线索:随着自己的意思,带有目的性的,如图右边所示,注意力集中在书本。
2025-03-28 18:14:53
1165
原创 深度学习基础--CNN经典网络之基于ResNet和DenseNet混合架构网络论文的复现(pytorch实现)
前言常见的一些模型融合方法有:本文采用的是第三种,参考论文:论文Resnet模型和DenseNet模型特点:在《论文》中,作者发现:ResNet更侧重于特征的复用,而DenseNet则更侧重于特征的生成。故作者提出了DPN网络,如图所示:这个图比较难看懂,换个更清晰的图看:这个图就容易看懂多了,DPN网络核心的就是上图中,蓝框和红框的东西,在DPN中,训练模块Block中,将输出的信息进行分拆,然后又进行融合,分拆和融合的思想是,ResNet的特征复用,与DenseNet的创建新特征:参考ResNet网络,
2025-03-21 18:01:25
1426
原创 MYSQL学习笔记(十一):MYSQL数据类型讲解
数据类型(data_type)是指系统中所允许的数据的类型。MySQL 数据类型定义了列中可以存储什么数据以及该数据怎样存储的规则,其实这个和C、java、cpp差不多。如果使用错误的数据类型可能会严重影响应用程序的功能和性能,所以在设计表时,应该特别重视数据列所用的数据类型。更改包含数据的列不是一件小事,这样做可能会导致数据丢失。因此,在创建表时必须为每个列设置正确的数据类型和长度。MySQL 的数据类型有大概可以分为 5 种,分别是整数类型浮点数类型和定点数类型日期和时间类型字符串类型二进制类型。
2025-03-11 23:08:42
1319
原创 深度学习基础--CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch)
DenseNet是在ResNet之后发明出来的,从网络结构图来看,他类似采用残差的方式。
2025-03-07 18:26:41
1380
原创 深度学习基础--CNN经典网络之ResNet50V2网络的讲解,ResNet50V2的复现(pytorch)以及用复现的ResNet50做鸟类图像分类
👀改进点原始resnet结果:先进行卷积,在进行BN和激活函数,最后执行addtion与RelU修改版本:先进行BN和激活函数,把addtion后的ReLU放到了残差内部,改进后残差内有两个ReLU。
2025-02-28 22:03:54
1141
原创 MYSQL学习笔记(十):约束介绍(如:非空、唯一、主键、外键、级联、默认、检查约束)
约束是表级的强制规定。可以在创建表时规定约束(通过CREATE TABLE语句),或者在表创建之后通过ALTER T ABLE语句规定约束。
2025-02-27 21:48:01
1079
原创 基于C++“简单且有效”的“数据库连接池”
表示连接池事先会和 MySQL Serve r创建最小个数的连接,当应用发起 MySQL 访问时,不用再创建和 MySQL Server 新的连接,直接从连接池中获取一个可用的连接即可,使用完成后并不去释放连接,而是把连接再归还到连接池当中。
2025-02-25 21:18:30
1511
原创 NGINX配置TCP负载均衡
nginx编译安装需要先安装pcre、openssl、zlib等库,也可以直接编译执行下面的configure命令,根据错误提示信息,安装相应缺少的库。注意需要再root权限下;重新加载配置文件启动。
2025-02-24 23:41:28
642
原创 MYSQL学习笔记(九):MYSQL表的“增删改查”
在创建表之后如果要增加一列,需要使用下面的语句。ALTER TABLE table_name ADD 字段名 数据类型;
2025-02-22 23:03:33
935
原创 深度学习基础--ResNet网络的讲解,ResNet50的复现(pytorch)以及用复现的ResNet50做鸟类图像分类
ResNet网络是CNN的经典网络架构,是有大神何凯明提出的,主要为了解决随着网络的加深而引起的“ 退化 ”问题,主要用于图像分类。可以说在如今的CV领域里面,大部分网络结构都有参考ResNet网络思想,无论是在图像分类、目标检测、图像识别上,甚至在网络模型中,也融合了ResNet网络的思想。
2025-02-21 22:33:46
3125
4
原创 MYSQL学习笔记(八):数据管理(插入、修改、删除数据)
前言:使用语句来向表中插入数据。语法给全部字段添加数据批量添加数据(用单条 INSERT 语句处理多个插入要比使用多条 INSERT 语句更快)语法说明如下。 语法 是 SQL 中的一个非常有用的语法,它允许你从一个或多个表中选择数据,并将这些数据插入到另一个表中。多个表查询结果,用。案例再来一点案例向myemp表中添加一条新的数据增加一个没有领导、没有部门也没有奖金的新员工编写完整格式将的员工信息,插入到表中编写简写格式将10部门雇员的信息插入到表之中修改数据
2025-02-17 22:05:56
1025
原创 深度学习项目--基于RNN的阿尔茨海默病诊断研究(pytorch实现)
它通过展示模型预测结果与实际标签之间的对比,帮助我们理解模型的准确度以及其在不同类别上的表现。其中,与患病相关性比较强的有:MMSE得分、功能评估得分、记忆抱怨、行为问题等相关性比较强,其中,MMSE得分、功能评估得分为负相关,记忆抱怨、行为问题为正相关。而对于多分类问题,混淆矩阵会相应地扩展到NxN的大小(N为类别数量),每一行代表实际类别,每一列代表预测类别。通过发现,由于原本数据中不患病的多,所以不患病的在图像中显示多,通过观察发现。:这里写代码的时候,不知道为什么,不指定字体,就显示不了字体。
2025-02-14 21:35:06
1074
原创 MYSQL学习笔记(七):新年第一篇之子查询
前言:子查询指一个查询语句嵌套在另一个查询语句内部的查询,这个特性从 MySQL 4.1 开始引入。在特定情况下,一个查询语句的条件需要另一个查询语句来获取,称为内层查询,内层查询语句的查询结果,可以为外层查询语句提供查询条件。其中,内层查询即子查询,外层查询即主查询,只是叫法不同而已。这个案例中,很明显要先找到最低工资数,然后才能通过条件查询进行后面操作,而先找到最低工资,就是标量子查询。根据子查询返回的数据分类:简单来说,子查询可以返回一个标量(就一个值)、一个行、一个列或一个表。根据子查询和主查询之
2025-02-10 23:40:20
1294
原创 MYSQL学习笔记(六):聚合函数、sql语句执行原理简要分析
前言:👁 注意:统计该企业员工的平均工资查询该企业员工的最高工资查询该企业员工的最低工资计算所有销售的工资之和MYSQL的运行顺序中常见的关键字段如下:这些在中执行顺序是不一样的,从书写顺序来看:👀 注意: 这些顺序不能颠倒。在执行语句过程中,sql执行顺序是:具体sql执行原理:当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止,这个过程得到是我们的原始数据。
2025-01-25 22:43:11
1312
原创 深度学习项目--基于LSTM--MLP的糖尿病预测探究(pytorch实现)
模型一直是一个很经典的模型,一般用于序列数据预测,这个可以很好的挖掘数据上下文信息,
2025-01-24 16:40:03
1960
原创 MYSQL学习笔记(五):单行函数(字符串、数学、日期时间、条件判断、信息、加密、进制转换函数)讲解
前言:MySQL 函数会对传递进来的参数进行处理,并返回一个处理结果,也就是返回一个值。MySQL 包含了大量并且丰富的函数,这里只讲解一部分,剩下的比较罕见的函数我们可以到「MySQL 参考手册」查询。查询出姓名长度是5的所有员工信息查询出员工姓名前三个字母是‘JAM’的员工查询所有员工姓名的前三个字母数学函数函数作用ROUND(数字[,保留位数])根据指定的保留位数对小数进行四舍五入,如果不指定保留位数,则小数点之后的数字全部进行全部四舍五入TRU
2025-01-22 21:10:40
1429
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅