代码解释:
- 整体功能:
- 此代码是使用 OpenMV 摄像头的一个简单示例,主要实现了对摄像头的基本设置和图像采集,并计算和显示采集图像的帧率。
- 首先,对摄像头进行初始化,包括重置、设置像素格式和帧大小,并等待设置生效。
- 然后创建一个时间对象用于计算帧率。
- 最后在一个无限循环中不断采集图像并打印出每秒采集的帧数。
# 此作品遵循 MIT 许可证授权。
# 版权所有 (c) 2013-2023 OpenMV LLC。保留所有权利。
# https://github.com/openmv/openmv/blob/master/LICENSE
#
# 你好世界示例
#
# 欢迎使用 OpenMV IDE!点击下面的绿色运行箭头按钮运行脚本!
# 导入 sensor 库,用于操作 OpenMV 摄像头传感器,包括配置和图像获取等功能。
import sensor
# 导入 time 库,提供时间相关的操作,例如延时和计时等功能。
import time
# 重置并初始化摄像头传感器,将其恢复到初始状态,以便后续的配置操作可以生效。
# 这个操作会清除传感器之前的任何设置,将其置于默认状态。
sensor.reset()
# 设置摄像头的像素格式为 RGB565。
# RGB565 是一种 16 位的颜色表示方式,使用 5 位表示红色,6 位表示绿色,5 位表示蓝色。
# 这样可以在存储和处理图像时节省空间,同时还能提供相对较好的颜色质量。
# 也可以将像素格式设置为 sensor.GRAYSCALE 来获取灰度图像,这样可以减少计算量和存储空间,适用于某些不需要颜色信息的场景。
sensor.set_pixformat(sensor.RGB565)
# 设置摄像头的帧大小为 QVGA(320x240)。
# 帧大小决定了摄像头拍摄图像的分辨率,QVGA 是一种常见的分辨率,适合在资源有限的情况下使用。
# 可以根据实际需求将其设置为其他分辨率,如 sensor.VGA(640x480)或 sensor.QQVGA(160x120)等。
sensor.set_framesize(sensor.QVGA)
# 等待一段时间(这里是 2000 毫秒),让摄像头传感器有足够的时间来应用前面设置的像素格式和帧大小。
# 这是因为摄像头在调整设置后,可能需要一定的时间来稳定并应用新的设置,避免后续图像采集出现异常。
sensor.skip_frames(time=2000)
# 创建一个时间对象 clock,使用 time 库的 clock 函数。
# 这个对象将用于计算每秒帧数(FPS),可以帮助我们评估程序的性能和摄像头的采集速度。
clock = time.clock()
# 开始一个无限循环,使程序可以持续不断地执行图像采集和处理操作。
while True:
# 更新时钟对象 clock 的时间,记录当前时刻。
# 每次调用 tick 函数,会更新时钟的状态,为后续计算 FPS 提供时间差信息。
clock.tick()
# 从摄像头采集一张图像,存储在变量 img 中。
# snapshot 函数会触发摄像头进行图像采集,并将采集到的图像数据存储在 img 中,供后续处理。
img = sensor.snapshot()
# 打印当前的每秒帧数(FPS)。
# 这里使用 clock.fps() 函数计算每秒帧数,通过计算两次 tick 之间的时间差得到。
# 注意:当 OpenMV 摄像头连接到 IDE 时,由于 IDE 会消耗一定的系统资源,摄像头的运行速度会减半,
# 当断开连接后,摄像头的处理速度会提高,FPS 也会相应增加。
print(clock.fps())