分享人:吕楚凡 电子科技大学 博士研究生
内容简介:
目前,变分量子算法由于其在含噪声中等规模量子设备上的适应性和实用性而备受关注,其中主要包括变分量子本征求解器和若干量子机器学习应用。然而,由于量子系统在物理实现上的复杂性,这些算法在实际运行时始终面临量子噪声和有限的量子资源等挑战。在物理学中,对称性对于我们理解和简化复杂系统起到了非常重要的作用。而对称性在机器学习中也得到了广泛应用。本次,将介绍两篇文章,其中第一篇文章主要关注在变分量子本征求解器中利用目标系统的对称性以简化量子电路和提升算法性能。第二篇文章则考虑到在量子机器学习的训练任务和训练数据中存在的对称性,比如图像分类中图片数据的平移旋转。
相关论文1
标题:Symmetry enhanced variational quantum spin eigensolver
作者:Chufan Lyu, Xusheng Xu, Man-Hong Yung, and Abolfazl Bayat
期刊:Quantum 7, 899 (2023)
相关论文2
标题:Exploiting Symmetry in Variational Quantum Machine Learning
作者:Johannes Jakob Meyer, Marian Mularski, Elies Gil-Fuster, Antonio Anna Mele, Francesco Arzani, Alissa Wilms, and Jens Eisert
期刊:PRX Quantum 4, 010328 (2023)
01 引言
在当前含噪声中等规模量子设备中,相干时间相对较短、初始化不完善、量子操作噪声和读出错误是具有代表性的几个问题。每个量子设备都会遇到其中一个或几个。对于变分量子算法的开发目的是在没有量子纠错的前提下,通过使用相对较短的量子电路来利用量子计算机的计算能力解决对于经典计算机来说较难的问题。其中,变分量子算法比较重要的应用包括变分量子本征求解器和量子机器学习。在量子硬件的限制下,变分量子算