关注微信公众号"量子计算HiQ"查看更多论文分享和学术活动,投稿请联系小助手“LLT66TT”
内容简介
在当今数据爆炸的时代,无监督学习在处理大规模未标记数据集方面发挥着至关重要的作用。将量子机器学习扩展到无监督领域已成为研究的前沿方向,旨在利用量子计算的独特优势提升学习效率和模型性能。
作为量子无监督相似性检测网络的开创性工作,SLIQ融合了量子叠加态和量子纠缠的特性,通过创新的变分量子电路设计,实现了基于量子电路的图像相似性检测。该方法的核心优势在于其资源高效的量子学习算法和方差减少技术,使其能够在当前NISQ设备上有效运行。SLIQ在实际评估中表现出色,在相似性检测任务上比基线量子三元组网络提高了31%的Spearman相关性。这一显著证明了SLIQ在捕捉图像间细微差异和提取有意义特征方面的优越性。不仅如此,SLIQ还在有标签数据集的分类任务中展现了强劲的竞争力,进一步验证了其方法的普适性和潜力,为未来量子计算在大规模数据分析和模式识别中的应用提供了新的可能。
相关论文1
标题:SLIQ: quantum image similarity networks on noisy quantum computers
作者:Daniel Silver, Tirthak Patel, Aditya Ranjan, Harshitta Gandhi, William Cutler, Devesh Tiwari
期刊: Proceedings of the AAAI Conference on Artificial Intelligence
相关论文2
标题:Quantum self-s