Hive中Map和Reduce阶段的分工

在Hive查询执行过程中,Map和Reduce阶段有明确的分工,但实际情况要复杂一些。

基本分工原则

  1. ​Map阶段​​:

    • 主要职责是读取输入数据并进行初步处理
    • 输出键值对形式的数据
  2. ​Reduce阶段​​:

    • 接收Map阶段输出的键值对
    • 对相同键的值进行聚合/计算
    • 输出最终结果

实际执行中的复杂情况

1. Map阶段也可以进行计算

在Hive中,Map阶段并非只是简单输出键值对,它也可以进行部分计算:

  • ​Map端聚合(Map-side Aggregation)​​:

    • 当启用hive.map.aggr=true
    • Map任务会在本地先对相同键的值进行部分聚合
    • 例如对于SELECT city, COUNT(1) FROM tb GROUP BY city
      • Map任务会维护一个HashMap,对相同city的计数进行本地累加
      • 输出(city, partial_count)而非原始
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自然术算

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值