在Hive查询执行过程中,Map和Reduce阶段有明确的分工,但实际情况要复杂一些。
基本分工原则
-
Map阶段:
- 主要职责是读取输入数据并进行初步处理
- 输出键值对形式的数据
-
Reduce阶段:
- 接收Map阶段输出的键值对
- 对相同键的值进行聚合/计算
- 输出最终结果
实际执行中的复杂情况
1. Map阶段也可以进行计算
在Hive中,Map阶段并非只是简单输出键值对,它也可以进行部分计算:
-
Map端聚合(Map-side Aggregation):
- 当启用
hive.map.aggr=true
时 - Map任务会在本地先对相同键的值进行部分聚合
- 例如对于
SELECT city, COUNT(1) FROM tb GROUP BY city
:- Map任务会维护一个HashMap,对相同city的计数进行本地累加
- 输出
(city, partial_count)
而非原始
- 当启用