一、Macbook 本地部署 deepseek 方法
1
、解压安装
Ollama-darwin.zip
2
、检查是否安装成功:终端中输入
ollama --version
,有以下输出即安装成功:
ollama version is 0.5.7
3
、安装
deepseek
:终端中输入
ollama pull deepseek-coder
,安装成功后有以下输出:
pulling (进度条)...
...
...
success
4
、开始
deepseek
聊天,终端中输入:
ollama run deepseek-coder
,点击回车之后即可离线在终端中问问题。
二、Ollama是什么
Ollama 是一款专注于本地化运行大型语言模型(LLM)的开源工具。具体介绍如下:
- 核心特点
- 本地化运行:可在个人电脑或服务器上直接运行开源大模型,如 Llama 3、Mistral、Phi-3 等,无需依赖云端 API,为用户提供了不依赖网络的本地语言处理能力。
- 轻量级容器管理:通过类似 Docker 的命令行工具管理模型容器,能快速下载、切换和运行模型,方便用户对不同模型进行操作和管理。
- 一键部署模型:用户使用单条命令即可完成模型下载、加载和交互,极大降低了模型部署的难度和成本。
- 多模型并行支持:能同时运行多个模型实例且互不干扰,满足用户在不同任务或场景下对不同模型的需求。
- 跨平台兼容:支持 Windows、macOS、Linux(包括 ARM 架构如树莓派)等多种操作系统,使不同系统的用户都能使用。
- RAG 集成:可结合本地文档库实现检索增强生成,让模型能够利用本地数据进行更准确、更有针对性的内容生成。
- 主要功能
- 本地模型推理:能离线运行 Llama 3、CodeLlama 等模型,进行文本、代码生成以及对话等任务,在本地即可实现强大的语言处理功能。
- 模型微调:基于本地数据调整模型参数,适配垂直领域,不过通常需搭配其他工具来实现更精细的微调。
- API 服务暴露:通过 REST API 或 OpenAI 兼容接口,供其他应用调用本地模型,方便与其他系统或应用进行集成。
- 多模态扩展:支持 Whisper(语音)、BakLLaVA(图像)等多模态插件,从单一的语言处理扩展到对多种模态数据的处理。
- 应用场景
- 教育领域:可作为智能学习伴侣,为学生提供定制化学习路径、练习题、辅导材料和学习计划,也可作为虚拟教学助手协助老师管理课堂和批改作业。
- 内容创作领域:能为创作者提供灵感,生成故事、文案等内容,还可进行语法检查和语句优化,以及跨语言翻译。
- 开发领域:能根据需求描述或代码注释生成代码逻辑片段,审查现有代码并提供优化建议,还可在开发流程中自动化执行重复性任务。
- 数据分析领域:对原始数据进行清洗、转换和规范化处理,解读数据的统计信息、趋势和相关性,并生成数据分析报告。
- 客户服务领域:作为智能客服快速理解客户问题并提供解决方案,分析客户反馈和评价,进行个性化推荐,增强客户粘性和忠诚度。
- 智能家居领域:通过语音控制智能家居设备,编排场景自动化程序,为用户打造舒适便捷的家居环境。
三、在本地部署deep seek的好处
(或其他LLM模型,如LLama、Mistral)
1.数据隐私和安全
- 完全离线运行:作为智能客服快速理解客户问题并提供解决方案,分析客户反馈和评价,进行个性化推荐,增强客户粘性和忠诚度。
- 避免数据泄露:通过语音控制智能家居设备,编排场景自动化程序,为用户打造舒适便捷的家居环境。
2.零API成本
- 无需支付API费用:长期使用比调用open AI、deep seek等云端服务更划算。
- 无限制请求:不会受到API速率或配额的影响。
3.低延迟和高速响应
- 本地GPU计算:推理速度快,避免云端API网络延迟。
- 结合实时任务:如代码自动补全,对话AI,数据分析。
4.自定义能力
- 自由微调(Fine-tuning):可用LoRA、QLoRA针对特定任务优化模型。
- 支持插件、知识库:结合本地向量数据库(如FAISS、Chroma)实现RAG(检索增强生成)。
- 可以调整参数:如max_tokens、temperature,优化输出效果。
5.可离线使用
- 断网也能运行:适用于五互联网环境,如实验室,封闭网络空间或远程地区。