- 博客(37)
- 收藏
- 关注
原创 全网最全医学图像数据汇总
本仓库汇总了多个领域的医学图像开源数据集,涵盖CT、MRI、超声、内窥镜、病理、多模态、PET、OCT以及皮肤镜等多种成像技术。每个数据集均详细列出了任务类型、部位、格式、数量及下载链接,旨在为医学图像研究者提供便捷的资源导航。⚠️:这些数据集仅适用于学术研究用途。
2025-06-02 22:28:33
2954
1
原创 源码解析(三):Stable Diffusion
核心思想前向过程(Forward Process):逐步向图像添加高斯噪声,最终将图像转化为纯噪声。反向过程(Reverse Process):从纯噪声开始,通过神经网络逐步去噪,重构出目标图像。潜空间操作:不是直接在像素空间中进行操作,而是将图像映射到潜在空间(通过预训练的 VAE 等模型),在潜空间中执行扩散过程,从而提高计算效率和生成质量。核心公式qxt∣xt−1Nxt;αt。
2025-06-02 21:17:15
1165
原创 源码解析(二):nnUNet
nnU-Net 支持使用 PyTorch 的 DistributedDataParallel (DDP) 进行分布式训练,当使用多个 GPU 时,批量大小分布在各个工作器上,并且系统处理跨设备的梯度同步。nnU-Net 结合使用了 Dice 损失和交叉熵(或基于区域的分割的 BCE),损失函数是根据任务类型(基于标签或基于区域的分割)以及是否启用深度监督来构建的。nnU-Net v2 中的评估和模型选择系统提供了一个强大的框架,用于评估已训练分割模型的性能、选择最佳配置,并通过后处理和集成来改进结果。
2025-06-01 14:15:28
1599
原创 26秋招大模型技术岗位面试题+面经(十四):知乎
1. BERT、GPT等主流大模型在细节上有哪些不同?比如位置编码、训练损失、激活函数和架构等方面。自回归模型有什么特点?2. 请讲解PPO与GRPO的区别3. 从数据角度看,大模型训练存在哪些问题?4. MOE架构是什么?有哪些特点?5. DPO的奖励是基于token粒度还是sentence粒度?6. 针对模型安全,有哪些防护措施可以实施?有量化指标吗?7. 分布式训练有哪些常用技术?8. 模型安全方面有哪些做法?有哪些常见的注入攻击手段?9. LLAMA的输入长度可以无限长吗?
2025-05-31 23:56:33
760
原创 26秋招大模型技术岗位面试题+面经(十三):比亚迪
1. 请讲述手撕代码的思路2. 项目评估过程中有哪些关键点需要注意?3. 请解释Java中的override概念4. 如何在旋转排序数组中进行二分搜索?5. 请逐步计算LLM的参数量及一次前向推理的计算量6. 如何实现返回最长回文串的算法?7. 请描述Transformer的结构和工作过程8. 如何使用回溯法实现全排列?9. 模型不收敛可能有哪些原因?10. Adam与AdamW优化算法有什么区别?11. 请解释BN中偏移因子与缩放因子的作用。
2025-05-31 23:54:02
891
原创 源码解析(一):GraphRAG
type: Postcategory: 源码解析GraphRAG 通过从非结构化文本构建知识图谱并将其用于检索,增强了传统的 RAG 系统。与仅依赖向量相似度的标准 RAG 方法不同,GraphRAG 提取实体和关系,执行社区检测,并生成不同层级的报告。这种结构化方法为语言模型提供了更多上下文和关系信息,从而产生更全面、更准确的响应。
2025-05-31 16:02:47
1548
原创 26秋招大模型技术岗位面试题+面经(十二):Boss直聘
1. 如果你需要构建一个实时数据处理系统,你会优先考虑哪些技术和架构?2. 请描述一次你在项目中遇到失败的经历,以及你从中学习到了什么。3. 面试中没有让手撕代码算法题。4. 请描述你参与的一次大型算法项目,包括你的角色和具体贡献。5. 面试中询问了所有项目,没有区别对待。6. 假设你负责优化一个推荐系统,但用户反馈不佳,你会采取什么步骤?7. Boss直聘多模态算法工程师(预训练)一面挂。8. 请分享一次你在团队中遇到重大技术分歧的经历,以及你是如何解决的。
2025-05-31 15:56:36
645
原创 26秋招大模型技术岗位面试题+面经(十一):网易
1. 请对比分析对比损失在负样本只有一个时与交叉熵的等价性2. 如何处理长尾分布问题?3. RAG记忆模块的平滑设计是如何实现的?4. 请解释Transformer-XL中绝对形式相对位置编码的原理5. 请手写实现多头注意力(MHA)和RoPE(旋转位置编码)6. 你期望从事哪方面的工作方向?7. 推理优化主要支撑哪些业务场景?8. 引擎后续的工作规划是怎样的?9. 请介绍你参与的RAG项目,团队分工是怎样的?10. 在RAG项目中哪种优化方式对指标提升最明显?
2025-05-31 15:53:33
1078
原创 26秋招产品运营岗位面试题+面经(二):网易
1. 请解释运营岗位的基本分工和工作内容2. 能详细说明你在百度创作者经历中的具体工作吗?3. 为什么选择光遇项目组?4. 你向HR询问了哪些关于工作的问题?5. 请分享一个工作中解决难题的具体案例6. 用户运营和社群运营有什么区别和联系?7. 你对美妆时尚领域了解多少?会如何运营这类账号?8. 你怎么理解播客这种内容形式?9. 你未来的职业发展方向是什么?特别是电商方向10. 你希望在实习中获得哪些成长?11. 你的写作能力如何?日语作文获奖经历能说明什么?
2025-05-30 00:34:33
2202
原创 26秋招产品运营岗位面试题+面经(一):蚂蚁金服
1. 小组讨论(30至40分钟):针对支付宝生活频道某一垂直类账号,制定一份运营方案。2. 在实习期间遇到的最大挑战和困难是什么?3. 对申请岗位的理解和自身优势是什么?4. 为什么选择互联网行业工作?5. 为什么放弃本专业方向,选择用户运营而非公关行业?6. 日常工作中使用哪些数据分析工具?7. 在做项目时是否进行过复盘和数据分析?8. 在美团实习期间,如何进行用户连接并引入KOC?9. 你认为支付宝目前有哪些需要改进的地方?10. 之前实习是否接触过元宇宙相关内容?
2025-05-30 00:29:47
1104
原创 26秋招大模型技术岗位面试题+面经(十):滴滴
1. 在编程过程中调试了两次,感觉基础知识不够扎实。2. 滴滴NLP的算法面试比较基础。3. 对理论不熟悉,应用理论的能力不足。4. 八皇后问题不会写。5. torch.nn 和 torch.nn.functional 的异同是什么?6. 对运筹学优化问题的理解。7. AUC指标的物理含义是什么?8. 深入探讨Transformer的底层原理,包括输入维度、过程中的维度变化及各种细节。9. L1和L2正则化的区别是什么?10. 激活函数的作用是什么?11. 二面,求二叉搜索树第k小的值。
2025-05-28 22:09:42
813
原创 26秋招大模型技术岗位面试题+面经(九):小红书
1. 先围绕项目展开,穿插概念理解。2. 对项目有较多理解,请介绍一篇论文,时间为二十分钟。3. 八股文很多,还有一些视觉方面的问题。4. 你觉得最大的难点是什么?5. 询问实习相关信息。6. 我的项目使用大模型实现text2sql,xhs项目组也在开发此应用,我们围绕这方面讨论了许多细节。7. 面试主要讨论实习经验,较少涉及理论知识考察,重点在于实习经历和代码题。建议大家多练习代码题。8. 突然遇到一道智力题,有些迷茫,以后需要多准备一些题解。9. 结合LLM与推荐系统时会遇到哪些问题?
2025-05-28 22:07:50
1300
原创 26秋招大模型技术岗位面试题+面经(八):华为
1. 需要进一步深入了解一些工具和算法的基础原理2. 二面仍有代码测试,问题比较扎实,和产品方向面试风格不同,但作为技术岗面试很正常3. 面试官对项目中使用的方法和网络与传统方法的区别特别感兴趣,尤其关注创新点,主要是为了防止招聘只会复制粘贴的工程师4. 面试官说很多题目是他们尚未解决的研究课题,主要是考察面试者思考问题的角度5. 输出n个有序序列中的k个最大值,采用归并加大根堆方法6. 使用了MoE模型,包含几个专家?这些专家的能力有何异同?7. 数据标注的策略是什么,如何改进?
2025-05-28 22:06:13
839
原创 26秋招大模型技术岗位面试题+面经(七):京东
1. 你拿到大模型业务需求会如何考虑?2. 请介绍你认为最有成就的实习项目?3. 为何广东人考虑来北京做算法工作?4. 修改过损失函数吗?知道哪些有趣的损失函数?5. 介绍一下LoRA微调原理:微调哪些层?常用训练参数设置(epoch、learning_rate等)?6. LoRA微调能否有效注入领域知识?效果如何?7. 了解大模型的位置编码吗?为什么必须使用位置编码?8. 介绍决策树和信息熵?9. 多轮对话数据的构成是什么?如何清洗?格式要求是什么?
2025-05-28 22:04:37
1087
原创 26秋招大模型技术岗位面试题+面经(六):美团
1. 自我介绍环节2. 选择一段CV算法实习经历进行分享3. 讨论图片质量分析项目,探讨与大模型应用的契合度4. 交流多模态大模型在质量分析中的实际应用(不展开具体技术细节)5. 第一个部门面试仅关注项目经历,未涉及理论知识6. 团队协作中遇到方案分歧时的处理方式7. 分享美团多模态大模型推荐算法面试全记录(重点关注RL应用)8. 比赛经历中的最大收获9. 面试难度评估及团队业务介绍(智能客服用药问答场景)10. 首次暑期实习代码题经历(需面试官提示优化)
2025-05-28 22:02:17
1106
原创 26秋招大模型技术岗位面试题+面经(四):阿里巴巴
1. 面试主要围绕论文、项目和算法题展开,包含大量灵活的场景问题2. 面试以场景题为主3. 最近参加阿里淘天集团算法岗面试,首次遇到开场就要求手写代码的情况4. 阿里面试难度较高,直接以编程题开始5. 深入追问论文和项目细节6. 询问论文实验的硬件配置(显卡型号)、模型规模和训练框架7. 在Embedding训练中如何保留空间语义同时去除用户隐私信息8. 计算attention时节省显存的策略(如样本拼接计算)9. 路网拓扑嵌入(Graph Embedding)的实现方法。
2025-05-28 00:47:56
1717
原创 26秋招大模型技术岗位面试题+面经(三):百度
1. 面试开始时直接要求背诵,未询问项目经验2. 百度业务涉及大模型智能对话场景,包括意图识别、RAG、NL2SQL、信息抽取和tool call等环节3. 代码表现良好,未被要求手写代码4. 询问实习期间如何协调学校工作5. 面试聚焦在序列建模和多目标建模经验,包括模型迭代和特征优化6. 基础理论问题回答完整,但算法题表现不佳7. 一面讨论愉快,涉及encoder和知识图谱的开放性话题,流程快速(1小时后约二面)8. 对比DIEN和SIM模型的优劣势,包括后续发展了解。
2025-05-28 00:45:54
953
原创 26秋招大模型技术岗位面试题+面经(二):腾讯
1. 你平时是怎么学习的?有什么自学方法?2. 你未来想从事哪个方向的工作?3. 简历上只写了一段实习经历和一个天池比赛经历,但多模态方向的比赛没被问到。4. 第四轮面试主要考察思维能力和基础知识。5. 一面问了很多基础理论题。6. RAG相比微调解决了什么问题?7. 你看过Meta的Metatron和DeepSpeed的源码吗?包括ZeRO优化是怎么实现的?8. 如果计算资源充足,为什么不做全参数微调?LoRA的参数为什么这么选?9. 如果要让大模型做数据分析,你会怎么设计?
2025-05-28 00:40:33
790
原创 26秋招大模型技术岗位面试题+面经(一):字节跳动
22. MLA(Multi-Head Latent Attention)如何与RoPE(Rotary Position Embedding)融合?13. 请手写MHA(Multi-Head Attention)和DPO(Direct Preference Optimization)算法。门控的训练方法是什么?14. MQA(Multi-Query Attention)相比Multi-Head Attention有哪些优化?32. self-attention和cross-attention的区别是什么?
2025-05-28 00:33:18
662
原创 医学图像公开数据集汇总
通过Github、竞赛网站和数据网站搜集到开源的医学图像数据集,供大家更方便地学习研究。根据成像模态分类,包含主流的医学图像分类、分割、检测任务的数据,数据集还在持续更新中......为了避免数据滥用,数据链接未放在此处,关注下面公众号后台备注数据名称,有需要的话还可以拉进相关志同道合的学习群大家一起交流学习!
2024-07-03 21:25:58
3577
原创 花了一个周末的时间,我做了一个医学图像论文的开源项目
深知学习的不易,看到很多刚步入大学或者研究生阶段的学生,还在为找论文,找方向,找数据四处奔波,很容易陷入信息差的陷阱中,被人割韭菜。本人也是做医学图像相关的,众人拾柴火焰高,希望志同道合且学有余力的伙伴们加入知识开源的队伍中,传播知识和经验。
2024-03-17 22:49:07
568
原创 顶会系列(七):NIPS2016-2022论文总接收数据分析
NIPS的全称曾为"Conference on Neural Information Processing Systems",后来更名为"Conference on Neural Information Processing Systems"。NIPS的目标是将机器学习、神经科学和人工智能领域的研究人员聚集在一起,促进跨学科的交流和合作。NIPS采用了双盲评审(double-blind review)的方式,评审专家对论文进行匿名评审,确保评审过程的公正性和匿名性。(可获取详细论文数据)
2024-03-10 13:05:47
1855
2
原创 顶会系列(六):IJCAI2017-2023论文总接收数据分析
IJCAI(International Joint Conference on Artificial Intelligence)是国际人工智能联合会议的缩写,是人工智能领域的重要学术会议之一。IJCAI是一个跨学科的会议,涵盖了人工智能领域的各个方向和领域,包括机器学习、知识表示与推理、自然语言处理、计算机视觉、机器人技术、智能代理、数据挖掘等。2017-2023 IJCAI顶会论文接收趋势图。IJCAI2017-2023年5089篇论文。(可获取详细论文数据)
2024-03-10 12:47:35
732
原创 顶会系列(五):ICML2017-2023论文总接收数据分析
ICML(International Conference on Machine Learning)是国际机器学习大会的缩写,是机器学习领域的顶级学术会议之一。该会议由国际机器学习学会(IMLS)主办,每年举办一次。2017-2023 ICML顶会论文接收趋势图。ICML2017-2023年7144篇论文。(可获取详细论文数据)
2024-03-10 12:29:41
649
原创 顶会系列(四):ICLR2018-2022论文总接收数据分析
ICLR的宗旨是填补表征学习领域的交流鸿沟,并提供一个专业化的交流平台。ICLR的独特之处在于其采用了开放评审制度,即Open Review,所有提交的论文都公开姓名等信息,并接受所有同行的评价和提问。这种公开评审制度吸引了学界的关注,使ICLR成为公开透明的先驱,并得到了广泛支持和影响。OpenReview.net是一个由Andrew McCAllum创办的公开评审系统,秉承公开同行评审、公开发表、公开来源、公开讨论、公开引导、公开推荐、公开API和开源等原则,并得到了多个机构的支持。
2024-03-10 12:19:02
562
原创 顶会系列(三):ECCV2012-2022论文总接收数据分析
规模:ECCV是一个规模庞大的会议,吸引了来自全球的学术界研究人员、工业界专家以及学生等参与。欧洲计算机视觉大会(European Conference on Computer Vision,ECCV)是计算机视觉领域的重要国际学术会议之一。领域特点:ECCV涵盖了广泛的计算机视觉研究领域,包括但不限于图像处理、目标检测与识别、图像分割、三维重建、人脸识别、行为分析、深度学习、计算摄影学、虚拟现实等。影响力:ECCV作为计算机视觉领域的三大顶级会议之一,具有很高的学术影响力和知名度。(可获取详细论文数据)
2024-03-09 07:30:00
508
原创 顶会系列(二):ICCV2013-2023论文总接收数据分析
CCV涵盖了广泛的计算机视觉研究领域,包括但不限于图像处理、目标检测与识别、图像分割、三维重建、人脸识别、行为分析、深度学习、计算摄影学、虚拟现实等。ICCV的论文经过严格的同行评审,只有通过评审的高质量和创新性论文才能被录用。ICCV由国际计算机视觉学会(International Association for Pattern Recognition,简称IAPR)和IEEE计算机学会(IEEE Computer Society)联合组织举办。2013-2023ICCV顶会论文接收趋势。
2024-03-08 21:59:30
559
原创 顶会系列(一):CVPR2013-2023十年论文数据分析
2013-2023年12860篇论文词云热点分析。2013-2023十年论文接收趋势。
2024-03-06 22:19:10
1452
原创 CVPR2024医学图像方向持续更新
序号 题目 摘要(中文简要) 链接 1 MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning 该论文的主要贡献是提出了MLIP框架,利用医学报告作为辅助信号,进行无监督预训练,改善医学视觉表示学习的泛化能力。MLIP通过图像-文本对比学习,在不同粒度上整合语言信息到视觉领域。模型包括全局对比学习、局部对齐对
2024-03-06 00:09:15
9857
2
原创 近年来LLM量化方法总结简图
红色高亮的方法表示它们属于参数高效微调的量化方法(Q-PEFT:Quantization for Parameter-Efficient Fine-Tuning),绿色高亮的方法表示它们属于与量化感知训练(QAT:Quantization-Aware Training)相关的方法,其他方法则属于基于PTQ(Post-Training Quantization)的方法。
2024-03-05 07:30:00
585
原创 大语言模型发展简图
基于Transformer的模型以非灰色展示:蓝色支线表示仅解码器模型,粉色支线表示仅编码器模型,绿色支线表示编码器-解码器模型。模型在时间轴上的垂直位置代表其发布日期。开源模型用实心方块表示,闭源模型用空心方块表示。右下角的堆叠条形图显示了来自不同公司和机构的模型数量。
2024-03-04 23:20:02
590
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅