全部论文标题更新于开源项目中,欢迎小伙伴加入开源项目:https://github.com/OpenSourcerer-A/awesome-medical-image-papers/tree/master
序号 | 题目 | 摘要(中文简要) | 链接 |
1 | MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning | 该论文的主要贡献是提出了MLIP框架,利用医学报告作为辅助信号,进行无监督预训练,改善医学视觉表示学习的泛化能力。MLIP通过图像-文本对比学习,在不同粒度上整合语言信息到视觉领域。模型包括全局对比学习、局部对齐对比学习和基于专家知识的类别级对比学习。实验证明,MLIP在图像分类、目标检测和语义分割等任务上具有良好的迁移性能。即使数据有限,MLIP也超越了最先进方法。 | https://arxiv.org/pdf/2402.02045.pdf |
2. | VoCo: A Simple-yet-Ef |