5.n阶矩阵A的特征值全为1且只有一个线性无关的特征向量,求A的Jordan标准型。
A只有一个线性无关的特征向量
特征值
的几何重数也即
。
则以为特征值的约当块个数为1.
又约当阵的阶数=原矩阵的阶数,A的特征值全为1
则是一个主对角元全为1,主对角元上方也全为1的矩阵。
6.求证:n阶方阵A的秩为r 的充分必要条件是A的形如
的初等因子恰有n-r个。
充分性:
</
A只有一个线性无关的特征向量
特征值
的几何重数也即
。
则以为特征值的约当块个数为1.
又约当阵的阶数=原矩阵的阶数,A的特征值全为1
则是一个主对角元全为1,主对角元上方也全为1的矩阵。
</