谢启鸿高等代数第四版习题7.7部分题目解析part1.

5.n阶矩阵A的特征值全为1且只有一个线性无关的特征向量,求A的Jordan标准型。

\becauseA只有一个线性无关的特征向量

\therefore特征值\lambda _{1}=1的几何重数也即dimV_{1}=1

则以\lambda _{1}为特征值的约当块个数为1.

\because约当阵的阶数=原矩阵的阶数,A的特征值全为1

J_{A}是一个主对角元全为1,主对角元上方也全为1的矩阵。

6.求证:n阶方阵A的秩为r 的充分必要条件是A的形如\lambda ^{k}的初等因子恰有n-r个。

充分性:

dimV_{1}=dim(ker(A-\lambda _{1}I_{n}))=n-dim(Im(A-\lambda _{1}I_{n}))

dim(Im(A-\lambda _{1}I_{n}))=rank(A-\lambda _{1}I_{n})

\lambda ^{k}是初等因子得到矩阵有为\lambda _{1}=0的特征值。

含有某一特征值的初等因子个数就是相应特征值的约当块个数(显而易见的)

则可得以0为特征值的约当块个数为n-r个,再由定理7.7.1前半部分(几何重数=约当块个数)可得到特征值0的几何重数为n-r(即dimV1=n-r),再由上面公式得到rank(A-\lambda _{1}I_{n})=r,再将\lambda _{1}=0带入得到rank(A)=r.\square

7.设\lambda _{0}是n阶矩阵A的k重特征值,求证rank((\lambda _{1}I_{n}- A)^{k})=n-k.

\lambda _{0}是k重特征值,所以特征多项式中含有(\lambda -\lambda _{0})^{k},将A带入得到(A-\lambda _{0}I_{n})^{k}=0

\becauseA相似于它的Jordan标准型

\therefore(J_{A}-\lambda _{0}I_{n})^{k}=0(显然,可以自证,但以防万一有同志不会在结尾处会有详细说明)

显然(J_{A}-\lambda _{0}I_{n})^{k}中有零行,而且只要求出零行个数就可以得到(J_{A}-\lambda _{0}I_{n})^{k}的秩,由相似可得到(A-\lambda _{0}I_{n})^{k}的秩,即可得到rank((\lambda _{1}I_{n}- A)^{k})的秩。

显而易见(J_{A}-\lambda _{0}I_{n})^{k}=

\becauseJ_{0}的主对角元为\lambda _{0},且为上/下三角矩阵,

\therefore(J_{0}-\lambda _{0}I_{n})的主对角元都是0

\therefore(J_{0}-\lambda _{0}I_{n})是一个幂零矩阵,且rank(J_{0}-\lambda _{0}I_{n})=k-1

\therefore由幂零矩阵的性质可以得到(J_{0}-\lambda _{0}I_{n})^{k}=0

\because其余Jordan块J_{i}因为主对角元不是\lambda _{0}

\therefore(J_{i}-\lambda _{0}I_{n})主对角元不为0,且是满秩矩阵。

根据满秩矩阵的性质可以得到(J_{i}-\lambda _{0}I_{n})^{k}\neq 0

\thereforerank(J_{A}-\lambda _{0}I_{n})^{k}=n-k

\thereforerank(A-\lambda _{0}I_{n})^{k}=n-k

\because负号不影响矩阵的秩,所以得证\square

附第6题括号中证明:

结语:又是在淹死在数学海洋里的一天。等会儿会有Part2可以接着看。看完觉得有用别忘点赞!

  • 14
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值