谢启鸿高等代数第四版习题7.7部分题目解析part1.

5.n阶矩阵A的特征值全为1且只有一个线性无关的特征向量,求A的Jordan标准型。

\becauseA只有一个线性无关的特征向量

\therefore特征值\lambda _{1}=1的几何重数也即dimV_{1}=1

则以\lambda _{1}为特征值的约当块个数为1.

\because约当阵的阶数=原矩阵的阶数,A的特征值全为1

J_{A}是一个主对角元全为1,主对角元上方也全为1的矩阵。

6.求证:n阶方阵A的秩为r 的充分必要条件是A的形如\lambda ^{k}的初等因子恰有n-r个。

充分性:

dimV_{1}=dim(ker(A-\lambda _{1}I_{n}))=n-dim(Im(A-\lambda _{1}I_{n}))

dim(Im(A-\lambda _{1}I_{n}))=rank(A-\lambda _{1}I_{n})</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值