前言:
-
本次梳理主要以结论和例题为主,结论也不再此处证明,如有需要可以在评论区询问,我会给出证明。
-
基础概念不再赘述,但是概念中需要注意和辨析的点会有偶尔涉及。
-
本文适合相应知识已经掌握到一定程度的看官,因为这篇总结的本质是我欲把所有学过的结论归归类,所以会出现章节穿插内容。
-
以上都OK我们就开始吧。
一、特征值与特征向量向量特征多项式
首先是关于特征值的结论:
- 方阵才能有特征值,所以像“任何矩阵都有特征值”这种话错的显而易见。
- 特征值可以为0。
- n阶方阵A可逆
0不是A的特征值。
- 一个方阵在复数域上一定有特征值,但是在实数域上不一定。(特别重要的一句话,点名了秩的作用。
- 一个特征值可以有多个特征向量。
所以接下来给出有关特征向量的结论:
- 特征向量不能是0向量。
- 矩阵A的属于同一个特征值的多个特征向量的线性组合不一定仍是该特征值的特征向量,必须保证组合之后不能是0向量。
- 矩阵A的不同特征值的特征向量和一定不是该矩阵的特征向量。
而特征值与特征向量是用特征多项式求出来的
所以接下来是跟特征多项式有关的结论:
是特征多项式,不是一个矩阵。
- 特征多项式的最高次数就是该矩阵的阶数。
- 相似的矩阵有相同的特征多项式,但是特征多项式相同的矩阵不一定相似。
- 由2可得到推论:特征多项式和基或表示矩阵的选取无关。
- 特征多项式也是A的一个零化多项式。(Cayley- Hamilton定理)(注:这个定理的证明不仅仅是将A带入即可,需要漫长的证明,引起重视)。
- 特征多项式和极小多项式有相同的根。
- 极小多项式是特征多项式的因式。
- 特征多项式和极小多项式不会随着域的扩大而改变。所以下图的话是正确的。
- 一个多项式矩阵的所有不变因子的乘积是特征多项式。
- 将特征多项式写成
,
就是相应特征值的代数重数,代数重数同时也等于等于以
为特征值的所有若当块的阶数之和,同时也是以A为表示矩阵的线性变换
的属于特征值