谢启鸿高等代数第四版习题7.7部分习题解析part2.以及部分第7章复习题

7.7部分

定理:以\lambda为特征值的K阶若当块个数为r(A-\lambda I_{n})^{k-1}+r(A-\lambda I_{n})^{k+1}-2r(A-\lambda I_{n})^{k}

11.设n阶矩阵A的特征值全为1,求证:对任意的正整数K,A^{k}与A相似。

证明:\becauseA=PJP^{-1}

\thereforeA^{m}=PJ^{m}P^{-1}(易证故此处不再证明)

而且A^{m}的特征值全为1。

A^{m}的特征值为1的k阶若当块的个数为

接下来只需证明J相似于J^{m}即可;

即证明两者有相同的约当标准型.

由书上7.8节的数学归纳可以知道,

J^{m}=\begin{pmatrix} \lambda ^{k} & C^{1}_{m} \lambda ^{k-1}& ......&......\\ & ......& ......&......\\ & & \lambda ^{k} & C^{1}_{m}\lambda ^{k-1}\\ & & & \lambda ^{k} \end{pmatrix}

\therefore J^{m}-\lambda ^{m}I_{n}=\begin{pmatrix} 0 & C^{1}_{m} \lambda ^{k-1}& ......&......\\ & ......& ......&......\\ & & 0 & C^{1}_{m}\lambda ^{k-1}\\ & & & 0 \end{pmatrix}

\therefore r(J^{m}-\lambda ^{m}I_{n})=r(J-\lambda I_{n})

所以两者不仅特征值相同,相同特征值的K阶若当块个数也相同(运用上述定理即可得到)

所以两者相似。

12.设n阶矩阵A的特征值全为1或-1,求证:A^{-1}与A相似。

(本题的题干按照“特征值是1或者-1”理解)

证明:\becauseA=PJP^{-1}

\thereforeA^{-1}=PJ^{-1}P^{-1}

A的全部特征值为\left \{ \left. 1......1,-1......-1 \right \} \right.(设1有r个,-1有n-r个)

A\eta =\lambda \eta得到A^{-1}\eta =\lambda^{-1} \eta,两者的特征值完全相同。

易知AA^{-1}的若当标准型中只有主对角元为1和-1的若当块。

如果两者针对于同一特征值的的K阶若当块个数完全相同,两者的若当标准型相同,两者就相似了,所以下证两者同一特征值的的K阶若当块个数相同

而主对角元为1的K阶若当块个数为

r(A-I_{n})^{k-1}+r(A-I_{n})^{k+1}-2r(A-I_{n})^{k}

因为A-I_{n}=A(I_{n}-A^{-1})=(I_{n}-A^{-1})A

所以对于任意的k\in N,都有(A-I_{n})^{k}=(A(I_{n}-A^{-1}))^{k}=((I_{n}-A^{-1})A)^{k}

r((A-I_{n})^{k})=r((A(I_{n}-A^{-1}))^{k})=r(((I_{n}-A^{-1})A)^{k})

A的特征值全都不为零,所以A是一个满秩矩阵。

所以r[(A-I_{n})^{k-1}]+r[(A-I_{n})^{k+1}]-2r[(A-I_{n})^{k}]=

r[(I_{n}-A^{-1})^{k-1}]+r[(I_{n}-A^{-1}]^{k+1})-2r[(I_{n}-A^{-1})^{k})]

而负号不影响矩阵的秩,则A与A的逆矩阵关于特征值1的若当块个数相同(同理可以推出来当特征值-1时也成立)所以A^{-1}A有相同的约当标准型。

所以两者相似。

复习题部分

3.设A是数域K上的n阶方阵,求证:A的极小多项式的次数小于等于r(A)+1.

易知存在可逆矩阵P,使得

PAP^{-1}=\begin{pmatrix} c(d_{1(x)}) & & & \\ & c(d_{2(x)})& & \\ & & ......& \\ & & & c(d_{k(x)}) \end{pmatrix}

其中d_{k}(x)=m_{A}(x)

由相似矩阵有相同的秩可以得出

r(A)=r(B)=\sum_{i=1}^{k}r(c(d_{k}(x)))\geqslant r(c(d_{k}(x)))\geqslant degd_{k}(x)-1=degm_{A}(x)-1

d_{k}(x)看作一个多项式,根据他的友阵的性质可得到r(c(d_{k}(x)))\geqslant degd_{k}(x)-1(后一篇文章会详细总结友矩阵的全部内容。)

4.设A是数域K上的n阶矩阵,求证:若tr(A)=0,则A相似于一个K上的主对角元全为零的矩阵。

本题采用数学归纳法。

当n=1时,若tr(A)=0,A=0。

下面假设n-1时成立,当n时,A的有理标准型

B=\begin{pmatrix} c(d_{1}(x))& & \\ & ......& \\ & &c(d_{k(x)}) \end{pmatrix}【A相似于B,所以只要证明B相似于一个K上的主对角元全为零的矩阵即可】

(1)若degd_{k}(x)=1,即d_{k}(x)=x-c,此时d_{1}(x)=......=d_{k}(x)=x-c,且k=n.

B=cI_{n},从而

tr(A)=tr(B)=n·c=0,所以c=0.

B为零矩阵,结论一定成立。

(2)若dead_{k}(x)>1,则有一个有理块,是多阶友阵的形式,左上角为0,把这个有理块挪到最上面,则会得到B的(1,1)元素为0

不妨设

B=\begin{pmatrix} 0& \beta ^{'}\\ \alpha & B_{1} \end{pmatrix}由于tr(A)=tr(B)=tr(B1)=0;

(B1是n-1阶的)

由归纳假设【(n-1)阶】存在Q,使得Q^{-1}B_{1}Q的主对角线为0

P=\begin{pmatrix} 1& 0\\ 0& Q \end{pmatrix},则有

P^{-1}BP=\begin{pmatrix} 0& x\\ x& Q^{-1}BQ \end{pmatrix}

\begin{pmatrix} 0& x\\ x& Q^{-1}BQ \end{pmatrix}这个矩阵是主对角线全为零的。所以A相似于一个K上的主对角元全为零的矩阵。

结语:有用请点赞,有错误欢迎指出!等会还会有复习题部分哦!

(好困,想睡觉。)

  • 13
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值