6年老Java面经总结,java开发应届生面试题

本文介绍了数据脱敏的概念、类型和常见方案,包括静态和动态脱敏,以及数据替换、对称加密等多种方法。同时,文章提到了ActiveMQ消息中间件在面试中的重要性,并探讨了相关面试问题。此外,还涵盖了Redis、Spring、高并发多线程和JVM面试的相关专题。
摘要由CSDN通过智能技术生成

什么是数据脱敏

先来看看什么是数据脱敏?数据脱敏也叫数据的去隐私化,在我们给定脱敏规则和策略的情况下,对敏感数据比如 手机号银行卡号 等信息,进行转换或者修改的一种技术手段,防止敏感数据直接在不可靠的环境下使用。

像政府、医疗行业、金融机构、移动运营商是比较早开始应用数据脱敏的,因为他们所掌握的都是用户最核心的私密数据,如果泄露后果是不可估量的。

数据脱敏的应用在生活中是比较常见的,比如我们在淘宝买东西订单详情中,商家账户信息会被用 * 遮挡,保障了商户隐私不泄露,这就是一种数据脱敏方式。

数据脱敏又分为静态数据脱敏(SDM)和 动态数据脱敏(DDM):

静态数据脱敏

静态数据脱敏(SDM):适用于将数据抽取出生产环境脱敏后分发至测试、开发、培训、数据分析等场景。

有时我们可能需要将生产环境的数据 copy 到测试、开发库中,以此来排查问题或进行数据分析,但出于安全考虑又不能将敏感数据存储于非生产环境,此时就要把敏感数据从生产环境脱敏完毕之后再在非生产环境使用。

这样脱敏后的数据与生产环境隔离,满足业务需要的同时又保障了生产数据的安全。

如上图所示,将用户的真实 姓名手机号身份证银行卡号 通过 替换无效化乱序对称加密 等方案进行脱敏改造。

动态数据脱敏

动态数据脱敏(DDM):一般用在生产环境,访问敏感数据时实时进行脱敏,因为有时在不同情况下对于同一敏感数据的读取,需要做不同级别的脱敏处理,例如:不同角色、不同权限所执行的脱敏方案会不同。

注意:在抹去数据中的敏感内容同时,也需要保持原有的数据特征、业务规则和数据关联性,保证我们在开发、测试以及数据分析类业务不会受到脱敏的影响,使脱敏前后的数据一致性和有效性。总之一句话:你爱怎么脱就怎么脱,别影响我使用就行

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值