【MATLAB源码-第242期】基于matlab的OFDM+QPSK系统莱斯信道Ricain信道估计仿真采用LS方法,输出误码率曲线。

操作环境:

MATLAB 2022a

1、算法描述

OFDM(正交频分复用)是一种广泛应用于现代通信系统的多载波传输技术,其主要优点包括高频谱效率、抗多径衰落和抵抗频率选择性衰落。OFDM系统通过将高速数据流分割成多个低速数据流,每个低速数据流调制到不同的子载波上进行传输。这样,OFDM可以有效对抗频率选择性衰落,并通过插入保护间隔和循环前缀来减小符号间干扰(ISI)的影响。

在实际无线通信环境中,信号在传输过程中会受到多径效应、衰落和噪声的影响。莱斯信道是一种常见的无线信道模型,用于描述信号在存在直达路径和多个反射路径情况下的传播特性。莱斯信道可以看作是瑞利信道的扩展,除了多径反射信号外,还包括一个直达信号分量。莱斯信道的特征主要由莱斯因子K来描述,K因子表示直达信号功率与散射信号功率的比值。

在OFDM系统中,信道估计是接收端恢复发送数据的关键步骤。由于无线信道的频率选择性衰落特性,接收信号在频域上会经历不同子载波的不同幅度和相位变化。因此,为了正确解调接收信号,接收端需要估计出每个子载波的信道频率响应。

传统的信道估计算法有多种,其中常见的方法包括最小二乘(LS)估计和最小均方误差(MMSE)估计。最小二乘估计算法通过已知的导频信号来估计信道频率响应,其优点是计算复杂度低,但在低信噪比情况下性能较差。最小均方误差估计则通过考虑噪声和信道统计特性来优化信道估计性能,但其计算复杂度较高。

在本系统中,我们采用最小二乘(LS)信道估计方法。整个系统的主要步骤如下:

首先,发射端生成待传输的数据比特序列。这些数据比特经过QPSK(四相相移键控)调制器进行调制。QPSK是一种常用的数字调制方式,通过将比特序列映射为四种不同的相位状态来传输数据。每个QPSK符号表示2个比特,这样可以提高频谱效率。

调制后的信号经过OFDM调制器进行OFDM调制。OFDM调制器将输入的符号序列映射到多个子载波上,并进行逆快速傅里叶变换(IFFT)得到时域信号。同时,为了对抗符号间干扰(ISI),在每个OFDM符号前添加循环前缀(CP)。循环前缀是复制OFDM符号末尾的一部分并插入到符号开头,用于抵消多径传播引起的延迟扩展。

OFDM调制后的信号经过莱斯信道进行传输。在莱斯信道中,信号会经历直达路径和多条反射路径的叠加。直达路径信号保持较高的稳定性,而反射路径信号则受到多普勒频移和延迟扩展的影响。莱斯信道的多径效应和衰落特性会引起信号的频率选择性衰落和时间选择性衰落。

同时,为了模拟实际无线通信环境中的噪声影响,传输信号还经过加性高斯白噪声(AWGN)信道。AWGN信道模型用于模拟传输信号在接收端受到的热噪声和其他随机噪声的影响,其特征是噪声具有恒定的功率谱密度和高斯分布特性。

在接收端,接收到的信号首先经过OFDM解调器进行OFDM解调。OFDM解调器对接收信号进行快速傅里叶变换(FFT),将时域信号转换为频域信号,并提取出每个子载波上的符号。同时,去除循环前缀以减小符号间干扰的影响。

为了进行信道估计,接收端需要利用导频信号。导频信号是预先已知的信号,嵌入到OFDM符号中,用于估计信道频率响应。在本系统中,我们采用最小二乘(LS)估计算法进行信道估计。具体方法是,通过导频信号的接收值与发射值之比来估计导频位置的信道频率响应,然后通过插值方法将信道频率响应扩展到所有子载波上。

最小二乘信道估计算法的优点是计算复杂度低,适用于实时信道估计。其基本思想是最小化导频信号接收值与发射值之间的误差平方和,从而得到信道频率响应的估计值。在实际实现中,通过求解线性方程组来得到最小二乘估计值。对于导频位置的信道频率响应估计值,可以采用插值方法进行扩展,例如线性插值或多项式插值等。

在得到信道频率响应估计值后,接收端对所有子载波上的接收符号进行信道均衡。信道均衡的目的是消除信道频率响应的影响,使得接收符号恢复到原始发射符号。具体方法是将接收符号除以相应子载波上的信道频率响应估计值,从而得到均衡后的符号序列。

均衡后的符号序列经过QPSK解调器进行解调,恢复出原始的比特序列。QPSK解调器将接收符号映射为比特序列,通过比较接收符号的相位来确定对应的比特值。解调后的比特序列与发射端的原始比特序列进行比较,可以计算得到误码率(BER)。

误码率(BER)是衡量通信系统性能的重要指标,表示在传输过程中发生错误的比特数与总传输比特数之比。误码率越低,表示通信系统的性能越好。在本系统中,通过对不同信噪比(SNR)下的误码率进行仿真,可以评估系统的抗噪性能和鲁棒性。

在整个仿真过程中,通过多次重复上述过程,生成大量的传输帧,并统计每个信噪比下的误码率。通过绘制误码率曲线,可以直观地观察不同信噪比下系统性能的变化趋势。

为了进一步提高误码率曲线的平滑性,可以增加仿真的帧数。帧数越多,统计结果越准确,误码率曲线也会更加平滑。在实际应用中,可以通过调整帧数和信噪比范围来平衡仿真时间和结果的准确性。

总的来说,本系统通过OFDM调制、莱斯信道传输、最小二乘信道估计和QPSK解调等步骤,完成了对QPSK-OFDM系统在莱斯信道下性能的仿真评估。系统采用最小二乘信道估计算法,通过导频信号对信道频率响应进行估计,并对接收符号进行信道均衡,最终计算得到误码率。仿真结果表明,系统在不同信噪比下的误码率变化趋势,验证了系统的有效性和鲁棒性。

在未来的研究和应用中,可以考虑采用更为先进的信道估计算法和均衡算法,如深度学习方法,进一步提高系统性能。同时,可以针对不同的无线通信环境和应用场景,优化系统参数和配置,提升通信质量和可靠性。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

  V

点击下方名片关注公众号获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值