在生产环境使用Kuberntes一年后,我们总结了这些经验和教训_有了kubernetes后,负载均衡是不是可以不要了

如果你还没有做好将Docker和Kubernetes落地到生产环境的准备,不妨参考参考我们的经验。我们已经在生产环境使用kubernetes一年多了。

从容器和容器编排工具开始

我们相信容器会是未来最主流的部署格式,这项技术让应用封装变得简单了许多。类似于Docker之类的工具提供了实际的容器,但我们还需要复制、故障排除等工具,以及可实现自动部署到多台机器的API,好让容器技术发挥出最大的作用。

在2015年初,Kubernetes、Docker Swarm等集成工具还不成熟,仅提供alpha版本。不过我们还是决定试一试,并选择了Docker Swarm。

我们用Docker Swarm来处理网络,利用Ambassador模式和一组脚本来实现自动化部署。这种方式难度之大,超乎想象,我们也因此收获了第一个教训:容器集成、网络、部署自动化是非常棘手的问题

好在我们很快意识到了这一点,并决定将筹码压在Kubernetes身上——一款由Google、Red Hat、Core OS及一些对大规模部署颇有见地的组织提供支持的集成工具。

通过Kubernetes实现负载均衡

使用Kubernetes,需要对pods、services、replication controller等概念了然于心。好消息是,包括Kubernetes官方文档在内,网络上有海量资源,可以帮助你快速上手。

成功建立并运行Kubernetes集群后,即可通过kubectl(Kubernetes CLI)部署应用了。然而当我们想要自动化部署时,却发现光有kubectl是不够的。不过,在此之前我们需要解决另一个问题:如何从Internet访问部署的应用

部署前的服务有一个IP地址,但这个地址仅在Kubernetes集群中可用。这意味着无法通过网络访问该服务!在Google Cloud Engine上运行时,Kubernetes会自动配置一个负载均衡用以访问应用;如果不在Google Cloud Engine上运行(比如我们),那就需要做一些额外的工作来获得负载均衡了。

直接在主机端口上开放服务是一个可行的解决方案(很多人一开始的确是这么做的),但我们发现,这样的做法等于放弃了Kubernetes所提供的许多好处。如果我们依赖主机上的端口,部署多个应用时会遇到端口冲突。另外这样的做法会加大扩展集群和更换主机的难度。

二级负载均衡器配置

我们发现,解决以上问题的更好办法,是在Kubernetes集群前配置负载均衡器,例如HAProxy或者NGINX。于是我们开始在AWS上的VPN中运行Kubernetes集群,并使用AWS ELB将外部web流量路由到内部HAProxy集群。HAProxy为每个Kubernetes服务配置了“后端”,以便将流量交换到各个pods。

这种“二级负载均衡器配置”主要也是为了适应AWS ELB相当有限的配置选项。其中一个限制是,它不能处理多个vhosts。这也是我们同时使用HAProxy的原因。只使用HAProxy(不用ELB)也能工作,只不过需要你在DNS级别解决动态AWS IP地址问题。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
图1:我们的“二级负载均衡器配置流程“

在任何情况下,创建新的Kubernetes服务,我们都需要一种机制动态重新配置负载均衡器(在我们的例子中是HAProxy)。

Kubernetes社区目前正在开发一个名为ingress的功能,用来直接从Kubernetes配置外部负载均衡器。可惜的是,目前开发工作还未完成。过去一年,我们采用的是API配合一个小的开源工具来配置负载均衡。

配置负载均衡

首先,我们需要一个地方存储负载均衡器配置。负载均衡器配置可以存储在任何地方,不过因为我们已经有etcd可用,就把这些配置放在了etcd里。我们使用一个名为“confd”的工具观察etcd中的配置变动,并用模板生成了一个新的HAProxy配置文件。当一个新的服务添加到Kubernetes,我们向etcd中添加一个新的配置,一个新的HAProxy配置文件也就此产生。

不断完善的Kubernetes

Kubernetes中仍然存在众多待解决的问题,很多开发者在社区上、设计文档中讨论解决这些问题的新功能,但开发适用于每一个人的解决方案是需要时间的。不过从长远来看,这也是一件好事,用shortcut的方式设计新功能很多时候会适得其反。

当然,问题的存在并不意味着我们现在所使用的Kubernetes功能有限。配合API,Kubernetes几乎可以完成你想要的一切。等Kubernetes增加新功能后,我们再用标准方案替代自己的解决方案不迟。

话说回来,在我们开发了用于负载均衡的解决方案后,另一项挑战接踵而至:蓝绿部署(Blue-green deployments)。

Kubernetes上的蓝绿部署

蓝绿部署是一种不中断服务的部署。与滚动更新不同,蓝绿部署在旧版本仍然正常工作的情况下,通过启用一个运行着新版本的副本集群来实现更新。当新版本的副本集群完全启动并运行时,负载均衡器配置才会更改并将负载切换到新版本上。这种方式的好处是,永远保持至少一个版本的应用正常运行,减少了处理多个并发版本带来的复杂性。蓝绿部署在副本数量很少时也能很好的工作。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
图2:Kubernetes下的蓝绿部署

图2展示了“Deployer“如何编排部署。基于Apache License,并作为Amdatu umbrella project的一部分,我们开源了这个组件的实现,供大家参考使用。另外,这个组件带web UI,可以用来配置部署。

这种机制的一个要点是在重新配置负载均衡器之前,执行在pods上的运行状态检查。我们希望每部署的每一个组件都能提供状态检查。目前的做法通常是为每个组件添加一个通过HTTP访问的状态检查。

实现部署自动化

有了Deployer,我们就可以把部署集成到构建流程中了。我们的构建服务器可以在构建成功之后,将新的镜像推送到registry(如Git Hub),而后构建服务器可以调用新版本应用并自动部署至测试环境中。同一个镜像也可以通过触发生产环境中的Deployer被推送上生产。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
图3:容器化自动部署流程

资源限制

使用Kubernetes时,搞清楚资源限制很重要。你可以在每个pod上配置资源请求和CPU/内存限制,也可以控制资源保证和bursting limits。

这些设置对于高效运行多个容器极为重要,防止容器因分配内存不足而意外停止。

建议尽早设置和测试资源限制。没有限制时,看起来运行良好,不代表把重要负载放到容器中不会出现问题。

Kubernetes监控

当我们快要搭建好Kubernetes时,我们意识到监控和日志在这个新的动态环境中非常重要。当我们面对大规模服务和节点时,进入服务器查看日志文件是不现实的,建一个中心化的日志和监控系统需要尽快提上议程。

日志

有很多用于日志记录的开源工具,我们使用的是Graylog和Apache Kafka(从容器收集摘录日志的消息传递系统)。容器将日志发送给Kafka,Kafka交给Graylog进行索引。我们让应用组件将日志打给Kafka,方便将日志流式化,成为易于索引的格式。也有一些工具可以从容器外收集日志,然后发送给日志系统。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Linux运维工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Linux运维知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip1024b (备注Linux运维获取)
img

个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

如果你觉得这些内容对你有帮助,可以添加VX:vip1024b (备注Linux运维获取)
[外链图片转存中…(img-lm07U2mz-1713056760321)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值