lsh61199
码龄1年
关注
提问 私信
  • 博客:13,871
    13,871
    总访问量
  • 10
    原创
  • 151,153
    排名
  • 93
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:吉林省
  • 加入CSDN时间: 2024-03-19
博客简介:

2401_83692861的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    158
    当月
    2
个人成就
  • 获得38次点赞
  • 内容获得5次评论
  • 获得56次收藏
  • 代码片获得1,057次分享
创作历程
  • 10篇
    2024年
成就勋章
兴趣领域 设置
  • Python
    python
  • Java
    javaspring boot
  • 开发工具
    gitintellij-idea
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

将大模型量化为GGUF模型文件

大语言模型在各种领域都有着广泛的应用,但是也面临着一些挑战,比如模型的大小、计算量和内存占用都很大,这限制了模型在某些设备上的部署和运行。为了解决这些问题,模型量化应运而生。模型量化是一种将浮点计算转成低比特定点计算的技术,它可以有效的降低模型计算强度、参数大小和内存消耗,从而提高模型的推理速度和效率。它是一种新的二进制模型文件,它可以对深度学习模型进行高效的压缩,大大减少模型的大小和内存占用,从而提高模型的推理速度和效率,同时兼顾模型的推理质量。
原创
发布博客 2024.06.17 ·
753 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

ollama本地运行llama3:70b模型(Linux)

【代码】ollama本地运行llama3:70b模型(Linux)
原创
发布博客 2024.05.13 ·
1875 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

本地ollama大模型接入沉浸式翻译

【代码】本地ollama大模型接入沉浸式翻译。
原创
发布博客 2024.05.06 ·
2400 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

基于Ollama+MaxKB快速搭建企业级RAG系统

然后启动ollama的服务,注意容器内ollama的服务是在11434端口,然后我们通过。Ubuntu22系统,Docker20以上,Docker的安装参考。
原创
发布博客 2024.05.06 ·
773 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

Mac本地部署LLama3+AnythingLLM+Docker方式的本地知识库

就可以访问anythingLLM了。3.安装Enchanted。1.拉取镜像,终端执行。3.配置ollama。
原创
发布博客 2024.05.03 ·
2629 阅读 ·
4 点赞 ·
3 评论 ·
6 收藏

在阿里云上部署Llama3(中文版本)

默认情况下直接运行以下代码即可体验llama3中文对话,请自行修改。2.新建requirements.txt文件,插入。1.新建conda环境。
原创
发布博客 2024.04.22 ·
1960 阅读 ·
3 点赞 ·
1 评论 ·
10 收藏

在阿里云上部署Qwen-7B和Qwen-VL

5.安装torch torchvision torchaudio。7. 如果您的设备支持fp16或bf16,我们建议安装。)以获得更高的效率和更低的内存占用。3.进入Qwen-7B文件,下载模型。3.进入Qwen-VL文件,下载模型。6.安装A卡版本auto-gptq。1.创建conda虚拟环境。1.创建conda虚拟环境。
原创
发布博客 2024.04.17 ·
1026 阅读 ·
10 点赞 ·
0 评论 ·
6 收藏

利用 langchain 思想实现的基于本地知识库的问答应用

一种利用思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。依托于本项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用模型。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。本项目实现原理:过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的top k。
原创
发布博客 2024.04.11 ·
662 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

部署ChatGLM3 api接口访问,微调模型

打开LLaMA-Factory项目data文件夹下的dataset_info.json,最后一行插入。2.一切看起来都非常的简单,现在只需要学会配置训练集和添加自己的训练集,就能完成大模型微调。新建self_cognition.json,插入数据。使用LLaMA-Factory,loar微调。1.下载/安装LLaMA-Factory。4.测试api,成功的话会终端显示对话。*本地调用测试失败,暂时没有解决。
原创
发布博客 2024.04.10 ·
1060 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

在阿里云上部署ChatGLM3

默认已经帮我们配置好了环境变量、网络,装好了python甚至pytorch、tensorflow等等,所以这些正常比较麻烦的操作已经不需要我们再搞了。有多文件需要修改变量路径,把默认的“THUDM/chatglm3-6b”修改为“/mnt/workspace/ChatGLM3/chatglm3-6b”因为模型很大(总共11.6GB),所以从modelscope上git下载(放到ChatGLM3下级目录中)conda的配置,将阿里云的源替换为清华的。
原创
发布博客 2024.04.09 ·
682 阅读 ·
6 点赞 ·
0 评论 ·
10 收藏