将大模型量化为GGUF模型文件

什么是模型量化

大语言模型在各种领域都有着广泛的应用,但是也面临着一些挑战,比如模型的大小、计算量和内存占用都很大,这限制了模型在某些设备上的部署和运行。为了解决这些问题,模型量化应运而生。模型量化是一种将浮点计算转成低比特定点计算的技术,它可以有效的降低模型计算强度、参数大小和内存消耗,从而提高模型的推理速度和效率。

什么是GGUF文件

它是一种新的二进制模型文件,它可以对深度学习模型进行高效的压缩,大大减少模型的大小和内存占用,从而提高模型的推理速度和效率,同时兼顾模型的推理质量。其中,一个突出的优点是可以跨平台和跨设备地加载和运行模型,无需安装任何额外的依赖库。

GGUF 有多种格式,主要区别在于浮点数的位数和量化的方式。不同的格式会影响模型的大小、性能和精度,一般来说,位数越少,量化越多,模型越小,速度越快,但是精度也越低。

例如:Q4_K_M 是一种 GGUF 模型文件的量化方式,它表示使用 4 位整数来量化模型的权重,其中 K 表示 Kernel,M 表示 Medium,意味着只有卷积核的权重被量化,而且使用中等的量化精度。

什么是llama.cpp

llama.cpp 是一个用 C/C++ 编写的 Llama 2 的运行时,可以在普通的笔记本电脑上运行 Llama 2 的模型,用来将模型转换并量化为 GGUF 文件,从而实现更多的功能和交互。

1.下载qwen2模型

git clone https://www.modelscope.cn/qwen/Qwen2-7B.git
### 如何将AI模型文件转换为GGUF格式 要将AI模型文件转换为GGUF格式,通常可以通过特定的脚本来完成这一过程。以下是关于此操作的具体说明: #### 转换流程概述 `convert_hf_to_gguf.py` 是一个常用的脚本,用于将Hugging Face上的模型文件转换为GGUF格式[^3]。该脚本能够读取来自Hugging Face的预训练权重,并按照GGUF的标准重新组织这些数据。 #### 安装必要的依赖项 在执行转换之前,需要确保已安装所需的依赖库。这一步骤可能涉及Python包管理器pip或其他工具。具体命令如下所示: ```bash pip install transformers sentencepiece accelerate safetensors ``` 上述命令会安装一系列必需的库,以便成功运行转换脚本[^2]。 #### 使用脚本进行转换 假设已经准备好了目标模型的位置,则可通过调用 `convert_hf_to_gguf.py` 来启动转换进程。下面是一个典型的例子: ```bash python convert-hf-to-gguf.py --out_type q4_0 ./models/microsoft/phi-2 ``` 在此实例中,`--out_type q4_0` 参数指定了输出文件应采用何种量化级别;而最后的部分则是输入模型所在的目录路径[^4]。 #### 自动生成手动设置输出位置 当不提供额外参数,默认情况下生成的GGUF文件会被放置于源模型所在同一文件夹下[^1]。然而,如果希望更改默认行为或者指定确切的目标地址,那么可以利用 `--dst` 选项实现这一点。 #### 关于GGUF格式的意义 GGUF代表了一种改进后的单文件共享方案,旨在克服先前GGML版本中存在的局限性——比如缺乏足够的灵活性以及较差的兼容性和可维护性等问题[^5]。因此,在实际应用过程中选用这种新型格式往往能带来诸多便利之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值